Cepedello, R., Deppisch, F. F., Gonzalez, L., Hati, C., & Hirsch, M. (2019). Neutrinoless Double-Beta Decay with Nonstandard Majoron Emission. Phys. Rev. Lett., 122(18), 181801–6pp.
Abstract: We present a novel mode of neutrinoless double-beta decay with emission of a light Majoron-like scalar particle phi. We assume it couples via an effective seven-dimensional operator with a (V + A) lepton current and (V +/- A) quark currents leading to a long-range contribution that is unsuppressed by the light neutrino mass. We calculate the total double-beta decay rate and determine the fully differential shape for this mode. We find that future double-beta decay searches are sensitive to scales of the order Lambda(NP) approximate to 1 TeV for the effective operator and a light scalar m(phi) < 0.2 MeV, based on ordinary double-beta decay Majoron searches. The angular and energy distributions can deviate considerably from that of two-neutrino double-beta decay, which is the main background. We point out possible ultraviolet completions where such an effective operator can emerge.
|
Gonzalez, L., Helo, J. C., Hirsch, M., & Kovalenko, S. G. (2016). Scalar-mediated double beta decay and LHC. J. High Energy Phys., 12(12), 130–15pp.
Abstract: The decay rate of neutrinoless double beta (0 nu beta beta) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0 nu beta beta-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0 nu beta beta decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0 nu beta beta-decay.
|