NEXT Collaboration(Alvarez, V. et al), Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., Gil, A., et al. (2013). Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC. Nucl. Instrum. Methods Phys. Res. A, 708, 101–114.
Abstract: We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 Xe-136 neutrino-less double beta decay (0 nu beta beta) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of similar to 1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and similar to 5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7-20 better than that of the current leading 0 nu beta beta experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0 nu beta beta search.
|
HADES Collaboration(Agakishiev, G. et al), Diaz, J., & Gil, A. (2011). pp and pi pi intensity interferometry in collisions of Ar+KCl at 1.76A GeV. Eur. Phys. J. A, 47(5), 63–8pp.
Abstract: Results on pp, pi(+) pi(+), and pi-pi-intensity interferometry are reported for collisions of Ar+KCl at 1.76A GeV beam energy, studied with the High Acceptance Di-Electron Spectrometer (HADES) at SIS18/GSI. The experimental correlation functions as a function of the relative momentum are compared to model calculations allowing the determination of the space-time extent of the corresponding emission sources. The pp source radii are found significantly larger than the pp emission radius. The present radii do well complement the beam-energy dependences of Gaussian source radii of the collision system of size A + A similar or equal to 40 + 40. The pp source radius at fixed beam energy is found to increase linearly with the cube root of the number of participants. From this trend, a lower limit of the pp correlation radius is deduced.
|
NEXT Collaboration(Renner, J. et al), Alvarez, V., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2015). Ionization and scintillation of nuclear recoils in gaseous xenon. Nucl. Instrum. Methods Phys. Res. A, 793, 62–74.
Abstract: Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
|
HADES Collaboration(Agakishiev, G. et al), Diaz, J., & Gil, A. (2013). Deep sub-threshold K*(892)(0) production in collisions of Ar + KCl at 1.76A GeV. Eur. Phys. J. A, 49(3), 34–7pp.
Abstract: Results on the deep sub-threshold production of the short-lived hadronic resonance K*(892)(0) are reported for collisions of Ar + KCl at 1.76 A GeV beam energy, studied with the High Acceptance Di-Electron Spectrometer (HADES) at SIS18/GSI. The K*(892)(0) production probability per central collision of P-K*0 = (4.4 +/- 1.1 +/- 0.5) x 10(-4) and the K*(892)(0)/K-0 ratio of P-K*0/P-K0 = (1.9 +/- 0.5 +/- 0.3) x 10(-2) are determined at the lowest energy so far (i.e. deep below the threshold for the corresponding production in nucleon-nucleon collisions, root s(NN)-root s(thr) = -340MeV). The K*(0)/K-0 ratio is compared with results of other experiments and with the predictions of the UrQMD transport approach and of the statistical hadronization model. The experimental K*(0) yield and the K-*0/K-0 ratio are overestimated by the transport model by factors of about five and two, respectively. In a chemically equilibrated medium the ratio corresponds to a temperature of the thermalized system being systematically lower than the value determined by the yields of the stable and long-lived hadrons produced in Ar + KCl collisions. From the present measurement, we conclude that sub-threshold K* production either cannot be considered to proceed in a system being in thermal equilibrium or these short-lived resonances appear undersaturated, for example as a result of the rescattering of the decay particles in the ambient hadronic medium.
|
HADES Collaboration(Agakishiev, G. et al), Diaz, J., & Gil, A. (2011). Hyperon production in Ar plus KCl collisions at 1.76A GeV. Eur. Phys. J. A, 47(2), 21–9pp.
Abstract: We present transverse momentum spectra, rapidity distribution and multiplicity of Lambda-hyperons measured with the HADES spectrometer in the reaction Ar(1.76A GeV) + KCl. The yield of Xi(-) is calculated from our previously reported Xi(-)/(Lambda+Sigma(0)) ratio and compared to other strange particle multiplicities. Employing a strangeness balance equation the multiplicities of the yet unmeasured Sigma(+/-)-hyperons can be estimated. Finally a statistical hadronization model is used to fit the yields of pi(-), K+, K-s(0), K-, phi, Lambda and Xi(-). The resulting chemical freeze-out temperature of T = (76 +/- 2) MeV is compared to the measured slope parameters obtained from fits to the transverse mass distributions of the different particles.
|