|
Bas i Beneito, A., Gargalionis, J., Herrero-Garcia, J., Santamaria, A., & Schmidt, M. A. (2024). An EFT approach to baryon number violation: lower limits on the new physics scale and correlations between nucleon decay modes. J. High Energy Phys., 07(7), 004–37pp.
Abstract: Baryon number is an accidental symmetry of the Standard Model at the Lagrangian level. Its violation is arguably one of the most compelling phenomena predicted by physics beyond the Standard Model. Furthermore, there is a large experimental effort to search for it including the Hyper-K, DUNE, JUNO, and THEIA experiments. Therefore, an agnostic, model-independent, analysis of baryon number violation using the power of Effective Field Theory is very timely. In particular, in this work we study the contribution of dimension six and seven effective operators to |triangle(B – L)| = 0, 2 nucleon decays taking into account the effects of Renormalisation Group Evolution. We obtain lower limits on the energy scale of each operator and study the correlations between different decay modes. We find that for some operators the effect of running is very significant.
|
|
|
Dutka, T. P., & Gargalionis, J. (2023). Dimension-five baryon-number violation in low-scale Pati-Salam models. Phys. Rev. D, 107(3), 035019–10pp.
Abstract: The gauge bosons of the Pati-Salam model do not mediate proton decay at the renormalizable level, and for this reason it is possible to construct scenarios in which SU(4) (R) SU(2)R is broken at relatively low scales. In this paper we show that such low-scale models generate dimension-five operators that can give rise to nucleon decays at unacceptably large rates, even if the operators are suppressed by the Planck scale. We find an interesting complementarity between the nucleon-decay limits and the usual meson-decay constraints. Furthermore, we argue that these operators are generically present when the model is embedded into SO(10), lowering the suppression scale. Under reasonable assumptions, the lower limit on the breaking scale can be constrained to be as high as O(108) GeV.
|
|
|
Gargalionis, J., Herrero-Garcia, J., & Schmidt, M. A. (2024). Model-independent estimates for loop-induced baryon-number-violating nucleon decays. J. High Energy Phys., 06(6), 182–52pp.
Abstract: Baryon number is an accidental symmetry of the Standard Model (SM) Lagrangian that so far has been measured to be exactly preserved, although it is expected to be violated at higher energies. In this work we compute order-of-magnitude estimates for the matching contributions of generic ultraviolet models to effective operators that generate nucleon decay processes. This is done in a systematic and automated way using operators constructed from SM fields up to dimension nine and working in a framework that has proved useful in the study of lepton-number violation. For each of the operators we derive estimates for the rates of different nucleon-decay channels. These allow us to establish model-independent lower bounds on the underlying new-physics scale and identify potential correlations between the various decay modes. The results are most relevant for families of models that generate the considered operator. This analysis is especially timely given the expected future sensitivities in numerous experiments such as Hyper-K, DUNE, JUNO and THEIA.
|
|