|
Gamermann, D., Garcia-Recio, C., Nieves, J., & Salcedo, L. L. (2011). Odd-parity light baryon resonances. Phys. Rev. D, 84(5), 056017–30pp.
Abstract: We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T matrix for meson-baryon scattering in the s wave. The building blocks of the scheme are the pi and N octets, the rho nonet and the UDELTA; decuplet. We identify poles in this unitary T matrix and interpret them as resonances. We study here the nonexotic sectors with strangeness S = 0, -1, -2, -3 and spin J = 1/2, 3/2 and 5/2. Many of the poles generated can be asociated with known N, UDELTA;, sigma, Lambda, Xi and Omega resonances with negative parity. We show that most of the low-lying three and four star odd-parity baryon resonances with spin 1/2 and 3/2 can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Xi (1620), Xi (1690), Xi (1950), Xi (2250), Omega (2250) and Omega (2380) resonances, which have not been determined experimentally yet.
|
|
|
Gamermann, D., Garcia-Recio, C., Nieves, J., Salcedo, L. L., & Tolos, L. (2010). Exotic dynamically generated baryons with negative charm quantum number. Phys. Rev. D, 81(9), 094016–11pp.
Abstract: Following a model based on the SU(8) symmetry that treats heavy pseudoscalars and heavy vector mesons on an equal footing, as required by heavy quark symmetry, we study the interaction of baryons and mesons in coupled channels within an unitary approach that generates dynamically poles in the scattering T-matrix. We concentrate in the exotic channels with negative charm quantum number for which there is the experimental claim of one state.
|
|
|
Garcia-Recio, C., Geng, L. S., Nieves, J., & Salcedo, L. L. (2011). Low-lying even-parity meson resonances and spin-flavor symmetry. Phys. Rev. D, 83(1), 016007–30pp.
Abstract: Based on a spin-flavor extension of chiral symmetry, a novel s-wave meson-meson interaction involving members of the rho nonet and of the pi octet is introduced, and its predictions are analyzed. The starting point is the SU(6) version of the SU(3)-flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry-breaking terms are then included to account for the physical meson masses and decay constants in a way that preserves (broken) chiral symmetry. Next, the T-matrix amplitudes are obtained by solving the Bethe-Salpeter equation in a coupled-channel scheme, and the poles are identified with their possible Particle Data Group counterparts. It is shown that most of the low-lying even-parity Particle Data Group meson resonances, especially in the J(P) = 0(+) and 1(+) sectors, can be classified according to multiplets of SU(6). The f(0)(1500), f(1)(1420), and some 0(+)(2(++)) resonances cannot be accommodated within this scheme, and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I >= 3/2 and/or vertical bar Y vertical bar = 2) with masses in the range of 1.4-1.6 GeV, which would complete the 27(1), 10(3), and 10(3)* multiplets of SU(3) circle times SU(2).
|
|
|
Garcia-Recio, C., Geng, L. S., Nieves, J., Salcedo, L. L., Wang, E., & Xie, J. J. (2013). Low-lying even parity meson resonances and spin-flavor symmetry revisited. Phys. Rev. D, 87(9), 096006–18pp.
Abstract: We review and extend the model derived in Garcia-Recio et al. [Phys. Rev. D 83, 016007 (2011)] to address the dynamics of the low-lying even-parity meson resonances. This model is based on a coupled-channels spin-flavor extension of the chiralWeinberg-Tomozawa Lagrangian. This interaction is then used to study the S-wave meson-meson scattering involving members not only of the pi octet, but also of the rho nonet. In this work, we study in detail the structure of the SU(6)-symmetry-breaking contact terms that respect (or softly break) chiral symmetry. We derive the most general local (without involving derivatives) terms consistent with the chiral-symmetry-breaking pattern of QCD. After introducing sensible simplifications to reduce the large number of possible operators, we carry out a phenomenological discussion of the effects of these terms. We show how the inclusion of these pieces leads to an improvement of the description of the J(P) = 2(+) sector, without spoiling the main features of the predictions obtained in the original model in the JP = 0(+) and J(P) = 1(+) sectors. In particular, we find a significantly better description of the I-G(J(PC)) =0(+)(2(++)), 1(-)(2(++)) and the I(JP)=1/2(2(+)) sectors, which correspond to the f(2)(1270), a(2)(1320), and K-2(*)(1430) quantum numbers, respectively.
|
|
|
Garcia-Recio, C., Hidalgo-Duque, C., Nieves, J., Salcedo, L. L., & Tolos, L. (2015). Compositeness of the strange, charm, and beauty odd parity Lambda states. Phys. Rev. D, 92(3), 034011–14pp.
Abstract: We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to Lambda-like states in the strange, charm, and beauty sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use a SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two J(P) = 1/2- and one J(P) = 3/2(-) Lambda states. We find that the. states which are bound states (the three Lambda(b)) or narrow resonances [one Lambda(1405) and one Lambda(c)(2595)] are well described as molecular states composed of s-wave meson-baryon pairs. The 1/2(-) wide Lambda(1405) and Lambda(c)(2595) as well as the 3/2(-) Lambda(1520) and Lambda(c)(2625) states display smaller compositeness so they would require new mechanisms, such as d-wave interactions.
|
|
|
Garcia-Recio, C., Nieves, J., Romanets, O., Salcedo, L. L., & Tolos, L. (2013). Odd parity bottom-flavored baryon resonances. Phys. Rev. D, 87(3), 034032–9pp.
Abstract: The LHCb Collaboration has recently observed two narrow baryon resonances with beauty. Their masses and decay modes look consistent with the quark model orbitally excited states Lambda(b)(5912) and Lambda(b)*(5920), with quantum numbers J(P) = 1/2(-) and 3/2(-), respectively. We predict the existence of these states within a unitarized meson-baryon coupled-channel dynamical model, which implements heavy-quark spin symmetry. Masses, quantum numbers and couplings of these resonances to the different meson-baryon channels are obtained. We find that the resonances Lambda(0)(b)(5912) and Lambda(0)(b)(5920) are heavy-quark spin symmetry partners, which naturally explains their approximate mass degeneracy. Corresponding bottom-strange baryon resonances are predicted at Xi(b)(6035.4) (J(P) = 1/2(-)) and Xi(b)(6043.3) (J(P) = 3/2(-)). The two Lambda(b) and two Xi(b) resonances complete a multiplet of the combined symmetry SU(3)-flavor times heavy-quark spin.
|
|
|
Garcia-Recio, C., Nieves, J., Romanets, O., Salcedo, L. L., & Tolos, L. (2013). Hidden charm N and Delta resonances with heavy-quark symmetry. Phys. Rev. D, 87(7), 074034–23pp.
Abstract: A model is developed to describe odd-parity baryon resonances generated dynamically through a unitary baryon-meson coupled-channels approach. The scheme applies to channels with light- and/or heavy-quark content. Distinct features of the model are that i) the interaction is an S-wave contact one, ii) it reduces to the SU(3) Weinberg-Tomozawa Hamiltonian when light pseudoscalar mesons are involved, thus respecting chiral symmetry, iii) spin-flavor is preserved in the light-quark sector, and iv) heavy-quark spin symmetry is fulfilled in the heavy-quark sector. In particular, baryon-meson states with different content in c or in (c) over bar do not mix. The model is a minimal one and it contains no free parameters. In this work, we focus on baryon resonances with hidden charm (at least one (c) over bar and one c quark). We analyze several possible sectors and, for the sector with zero net charm, we write down the most general Lagrangian consistent with SU(3) and heavy-quark spin symmetry. We explicitly study the N and Delta states, which are produced from the S-wave interaction of pseudoscalar and vector mesons with 1/2(+) and 3/2(+) baryons within the charmless and strangeless hidden-charm sector. We predict seven odd-parity N-like and five Delta-like states with masses around 4 GeV, most of them as bound states. These states form heavy-quark spin multiplets, which are almost degenerate in mass. The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks and they might be looked for in the forthcoming PANDA experiment at the future FAIR facility.
|
|
|
Garcia-Recio, C., Nieves, J., Salcedo, L. L., & Tolos, L. (2012). D- mesic atoms. Phys. Rev. C, 85(2), 025203–13pp.
Abstract: The anti-D meson self-energy is evaluated self-consistently, using unitarized coupled-channel theory, by computing the in-medium meson-baryon T matrix in the C = -1, S = 0 sector. The heavy pseudo-scalar and heavy vector mesons, (D) over bar and (D) over bar*, are treated on equal footing as required by heavy-quark spin symmetry. Results for energy levels and widths of (D) over bar (-) mesic atoms in C-12, Ca-40, Sn-118, and Pb-208 are presented. The spectrum contains states of atomic and of nuclear types for all nuclei. (D) over bar (0)-nucleus bound states are also obtained. We find that, after electromagnetic and nuclear cascade, these systems end up with the (D) over bar bound in the nucleus, either as a meson or as part of an exotic (D) over barN (pentaquark) loosely bound state.
|
|
|
Garcia-Recio, C., Nieves, J., & Tolos, L. (2010). D mesic nuclei. Phys. Lett. B, 690(4), 369–375.
Abstract: The energies and widths of several D-0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D-0 bound states in all studied nuclei, from C-12 up to Pb-208. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D-0-nucleus bound states, as compared to previous studies based on SU(4) flavor symmetry. In some cases, the half widths are smaller than the separation of the levels, what makes possible their experimental observation by means of a nuclear reaction. This can be of particular interest for the future PANDA@FAIR physics program. We also find a D+ bound state in C-12, but it is too broad and will have a significant overlap with the energies of the continuum.
|
|
|
Romanets, O., Tolos, L., Garcia-Recio, C., Nieves, J., Salcedo, L. L., & Timmermans, R. (2013). Heavy-quark spin symmetry for charmed and strange baryon resonances. Nucl. Phys. A, 914, 488–493.
Abstract: We study charmed and strange odd-parity baryon resonances that are generated dynamically by a unitary baryon-meson coupled-channels model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry plus a suitable symmetry breaking. The model generates resonances with negative parity from the s-wave interaction of pseudoscalar and vector mesons with 1/2(+) and 3/2(+) baryons in all the isospin, spin, and strange sectors with one, two, and three charm units. Some of our results can be identified with experimental data from several facilities, such as the CLEO, Belle, or BaBar Collaborations, as well as with other theoretical models, whereas others do not have a straightforward identification and require the compilation of more data and also a refinement of the model. (c) 2013 Elsevier B.V. All rights reserved.
|
|