ATLAS Collaboration(Aad, G. et al), Bernabeu Verdu, J., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fassi, F., et al. (2014). Operation and performance of the ATLAS semiconductor tracker. J. Instrum., 9, P08009–73pp.
Abstract: The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.
|
Diez, S. et al, Bernabeu Verdu, J., Civera, J. V., Garcia, C., Garcia-Argos, C., Lacasta, C., et al. (2014). A double-sided, shield-less stave prototype for the ATLAS Upgrade strip tracker for the High Luminosity LHC. J. Instrum., 9, P03012–16pp.
Abstract: A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools.
|