|
Cañas, B. C., Garces, E. A., Miranda, O. G., Tortola, M., & Valle, J. W. F. (2016). The weak mixing angle from low energy neutrino measurements: A global update. Phys. Lett. B, 761, 450–455.
Abstract: Taking into account recent theoretical and experimental inputs on reactor fluxes we reconsider the determination of the weak mixing angle from low energy experiments. We perform a global analysis to all available neutrino-electron scattering data from reactor antineutrino experiments, obtaining sin(2) theta(W) = 0.252 +/- 0.030. We discuss the impact of the new theoretical prediction for the neutrino spectrum, the new measurement of the reactor antineutrino spectrum by the Daya Bay collaboration, as well as the effect of radiative corrections. We also reanalyze the measurements of the nu(e) – e cross section at accelerator experiments including radiative corrections. By combining reactor and accelerator data we obtain an improved determination for the weak mixing angle, sin(2) theta(W) = 0.254 +/- 0.024.
|
|
|
Garces, E. A., Miranda, O. G., Tortola, M., & Valle, J. W. F. (2012). Low-energy neutrino-electron scattering as a standard model probe: The potential of LENA as case study. Phys. Rev. D, 85(7), 073006–6pp.
Abstract: Several proposals for studying neutrinos with large detectors are currently under discussion. We suggest that they could provide a precise measurement of the electroweak mixing angle as well as a probe for new physics, such as nonstandard neutrino interactions, and the electroweak gauge structure. We illustrate this explicitly for the case of the LENA proposal, either with an artificial radioactive source or by using the solar neutrino flux.
|
|