Albaladejo, M., Fernandez-Soler, P., Guo, F. K., & Nieves, J. (2017). Two-pole structure of the D-0*(2400). Phys. Lett. B, 767, 465–469.
Abstract: The so far only known charmed non-strange scalar meson is dubbed as D-0(*)(2400) in the Review of Particle Physics. We show, within the framework of unitarized chiral perturbation theory, that there are in fact two (I = 1/2, J(P) = 0(+)) poles in the region of the D-0(*)( 2400) in the coupled-channel D pi, D eta and D-s (K) over bar scattering amplitudes. With all the parameters previously fixed, we predict the energy levels for the coupled-channel system in a finite volume, and find that they agree remarkably well with recent lattice QCD calculations. This successful description of the lattice data is regarded as a strong evidence for the two-pole structure of the D-0(*)( 2400). With the physical quark masses, the poles are located at (2105(-8)(+6) – i102(-12)(+10)) MeV and (2451(-26)(+36) – i134(-8)(+7)) MeV, with the largest couplings to the D pi and D-s (K) over bar channels, respectively. Since the higher pole is close to the D-s (K) over bar threshold, we expect it to show up as a threshold enhancement in the D-s (K) over bar invariant mass distribution. This could be checked by high-statistic data in future experiments. We also show that the lower pole belongs to the same SU(3) multiplet as the D-s0(*)(2317) state. Predictions for partners in the bottom sector are also given.
|
Albaladejo, M., Fernandez-Soler, P., & Nieves, J. (2016). Z(c)(3900): confronting theory and lattice simulations. Eur. Phys. J. C, 76(10), 573–9pp.
Abstract: We consider a recent T -matrix analysis by Albaladejo et al. (Phys Lett B 755: 337, 2016), which accounts for the J/psi pi and D*(D) over bar coupled-channels dynamics, and which successfully describes the experimental information concerning the recently discovered Z(c)(3900)(+/-). Within such scheme, the data can be similarly well described in two different scenarios, where Z(c)(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek et al. (Phys Rev D 91: 014504, 2015), thus making it difficult to disentangle the two possibilities. We also study the volume dependence of the energy levels obtained with our formalism and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Z(c)(3900) state.
|
Albaladejo, M., Fernandez-Soler, P., Nieves, J., & Ortega, P. G. (2018). Contribution of constituent quark model c(s)over-bar states to the dynamics of the D*s0 (2317) and Ds1(2460) resonances. Eur. Phys. J. C, 78(9), 722–22pp.
Abstract: The masses of the D*(s0) (2317) and D-s1(2460) resonances lie below the DK and D* K thresholds respectively, which contradicts the predictions of naive quark models and points out to non-negligible effects of the D(*) K loops in the dynamics of the even-parity scalar (J(pi) = 0(+)) and axial-vector (J(pi) = 1(+)) c (s) over bar systems. Recent lattice QCD studies, incorporating the effects of the D(*) K channels, analyzed these spin-parity sectors and correctly described the D*(s0)(2317) – D-s1(2460) mass splitting. Motivated by such works, we study the structure of the D*(s0)(2317) and D-s1(2460) resonances in the framework of an effective field theory consistent with heavy quark spin symmetry, and that incorporates the interplay between D(*) K meson-meson degrees of freedom and bare P-wave c (s) over bar states predicted by constituent quark models. We extend the scheme to finite volumes and fit the strength of the coupling between both types of degrees of freedom to the available lattice levels, which we successfully describe. We finally estimate the size of the D(*) K two-meson components in the D*(s0)(2317) and D-s1(2460) resonances, and we conclude that these states have a predominantly hadronic-molecular structure, and that it should not be tried to accommodate these mesons within c (s) over bar constituent quark model patterns.
|
Albaladejo, M., Fernandez-Soler, P., Nieves, J., & Ortega, P. G. (2017). Lowest-lying even-parity (B)over-bar(s) mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses. Eur. Phys. J. C, 77(3), 170–9pp.
Abstract: The discovery of the D*(s0)(2317) and D-s1(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q (q) over bar and (Q (q) over bar)(q (q) over bar) Fock components. In contrast to the c (s) over bar sector, there is no experimental evidence of J(P) = 0(+), 1(+) bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D*(s0)(2317) and D-s1(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave (B) over bar (s) scalar and axial mesons and the (B) over bar (()*()) K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels.
|
Bayar, M., Fernandez-Soler, P., Sun, Z. F., & Oset, E. (2016). States of rho B*(B)over-bar* with J=3 within the fixed center approximation to Faddeev equations. Eur. Phys. J. A, 52(4), 106–8pp.
Abstract: In this work we stu dy the rho B*(B) over bar* three-body system solving the Faddeev equations in the fixed center approximation. We assume the B*B* system forming a cluster, and in terms of the two-body rho B* unitarized scattering amplitudes in the local hidden gauge approach we find a new I(J(PC)) = 1(3(--)) state. The mass of the new state corresponds to a two-particle invariant mass of the rho B* system close to the resonant energy of the B-2(*) (5747), indicating that the role of this J = 2 resonance is important in the dynamical generation of the new state.
|
Du, M. L., Albaladejo, M., Fernandez-Soler, P., Guo, F. K., Hanhart, C., Meissner, U. G., et al. (2018). Towards a new paradigm for heavy-light meson spectroscopy. Phys. Rev. D, 98(9), 094018–8pp.
Abstract: Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.
|
Fernandez-Soler, P., & Ruiz Arriola, E. (2017). Coarse graining of NN inelastic interactions up to 3 GeV: Repulsive versus structural core. Phys. Rev. C, 96(1), 014004–14pp.
Abstract: The repulsive short-distance core is one of the main paradigms of nuclear physics which even seems confirmed by QCD lattice calculations. On the other hand nuclear potentials at short distances are motivated by high energy behavior where inelasticities play an important role. We analyze NN interactions up to 3 GeV in terms of simple coarse grained complex and energy dependent interactions. We discuss two possible and conflicting scenarios which share the common feature of a vanishing wave function at the core location in the particular case of S waves. We find that the optical potential with a repulsive core exhibits a strong energy dependence whereas the optical potential with the structural core is characterized by a rather adiabatic energy dependence which allows one to treat inelasticity perturbatively. We discuss the possible implications for nuclear structure calculations of both alternatives.
|
Fernandez-Soler, P., Sun, Z. F., Nieves, J., & Oset, E. (2016). The rho(omega) B*(B) interaction and states of J=0, 1, 2. Eur. Phys. J. C, 76(2), 82–12pp.
Abstract: In this work, we study systems composed of a rho/omega and B* meson pair. We find three bound states in isospin, spin-parity channels (1/2, 0(+)), (1/2, 1(+)), and (1/2, 2(+)). The state with J = 2 can be a good candidate for the B-2*(5747). We also study the rho B system, and a bound state with mass 5728 MeV and width around 20 MeV is obtained, which can be identified with the B-1(5721) resonance. In the case of I = 3/2, one obtains repulsion and, thus, no exotic (molecular) mesons in this sector are generated in the approach.
|
Oset, E. et al, Albaladejo, M., Nieves, J., Fernandez-Soler, P., & Sun, Z. F. (2016). Weak decays of heavy hadrons into dynamically generated resonances. Int. J. Mod. Phys. E, 25(1), 1630001–105pp.
Abstract: In this paper, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allow for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances.
|
Pavao, R., Gubler, P., Fernandez-Soler, P., Nieves, J., Oka, M., & Takahashi, T. T. (2021). The negative-parity spin-1/2 A baryon spectrum from lattice QCD and effective theory. Phys. Lett. B, 820, 136473–8pp.
Abstract: The spectrum of the negative-parity spin-1/2 Lambda baryons is studied using lattice QCD and hadronic effective theory in a unitarized coupled-channel framework. A direct comparison between the two approaches is possible by considering the hadronic effective theory in a finite volume and with hadron masses and mesonic decay constants that correspond to the situation studied on the lattice. Comparing the energy level spectrum and SU(3) flavor decompositions of the individual states, it is found that the lowest two states extracted from lattice QCD can be associated with one of the two Lambda(1405)-poles and the Lambda(1670) resonance. The quark mass dependences of these two lattice QCD levels are in good agreement with their effective theory counterparts. However, as current lattice QCD studies still rely on three-quark operators to generate the physical states, clear signals corresponding to the meson-baryon scattering states, that appear in the finite volume effective theory calculation, are not yet seen.
|