|
Alioli, S., Fernandez, P., Fuster, J., Irles Quiles, A., Moch, S., Uwer, P., et al. (2013). A new observable to measure the top-quark mass at hadron colliders. Eur. Phys. J. C, 73(5), 2438–11pp.
Abstract: A new method to measure the top-quark mass in high energetic hadron collisions is presented. We use theoretical predictions calculated at next-to-leading order accuracy in quantum chromodynamics to study the ( normalized) differential distribution of the t (t) over bar + 1-jet cross section with respect to its invariant mass root s(t (t) over barj). The sensitivity of the method to the top-quark mass together with the impact of various theoretical and experimental uncertainties has been investigated and quantified. The new method allows for a complementary measurement of the top-quark mass parameter and has a high potential to become competitive in precision with respect to established approaches. Furthermore we emphasize that in the proposed method the mass parameter is uniquely defined through one-loop renormalization.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2020). Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280. J. High Energy Phys., 10(10), 114–43pp.
Abstract: The electron (anti-)neutrino component of the T2K neutrino beam constitutes the largest background in the measurement of electron (anti-)neutrino appearance at the far detector. The electron neutrino scattering is measured directly with the T2K off-axis near detector, ND280. The selection of the electron (anti-)neutrino events in the plastic scintillator target from both neutrino and anti-neutrino mode beams is discussed in this paper. The flux integrated single differential charged-current inclusive electron (anti-)neutrino cross-sections, d sigma/dp and d sigma/d cos(theta), and the total cross-sections in a limited phase-space in momentum and scattering angle (p 300 MeV/c and theta <= 45 degrees) are measured using a binned maximum likelihood fit and compared to the neutrino Monte Carlo generator predictions, resulting in good agreement.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2020). Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations. Nature, 580(7803), 339–344.
Abstract: The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model's charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2020). Measurement of the muon neutrino charged-current single pi(+) production on hydrocarbon using the T2K off-axis near detector ND280. Phys. Rev. D, 101(1), 012007–19pp.
Abstract: We report the measurements of the single and double differential cross section of muon neutrino charged-current interactions on carbon with a single positively charged pion in the final state at the T2K off-axis near detector using 5.56 x 10(20) protons on target. The analysis uses data control samples for the background subtraction and the cross section signal, defined as a single negatively charged muon and a single positively charged pion exiting from the target nucleus, is extracted using an unfolding method. The model-dependent cross section, integrated over the T2K off-axis neutrino beam spectrum peaking at 0.6 GeV, is measured to be sigma = (11.76 +/- 0.44(stat) +/- 2.39(syst)) x 10(-40) cm(2) nucleon(-1). Various differential cross sections are measured, including the first measurement of the Adler angles for single charged pion production in neutrino interactions with heavy nuclei target.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2020). First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K. Phys. Rev. D, 101(11), 112001–44pp.
Abstract: This paper presents the first combined measurement of the double-differential muon neutrino and antineutrino charged-current cross sections with no pions in the final state on hydrocarbon at the off-axis near detector of the T2K experiment. The data analyzed in this work comprise 5.8 x 10(20) and 6.3 x 10(20) protons on target in neutrino and antineutrino mode respectively, at a beam energy peak of 0.6 GeV. Using the two measured cross sections, the sum, difference, and asymmetry were calculated with the aim of better understanding the nuclear effects involved in such interactions. The extracted measurements have been compared with the prediction from different Monte Carlo generators and theoretical models showing that the difference between the two cross sections have interesting sensitivity to nuclear effects.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2020). First measurement of the charged current (nu)over-bar(mu) double differential cross section on a water target without( )pions in the final state. Phys. Rev. D, 102(1), 012007–16pp.
Abstract: This paper reports the first differential measurement of the charged-current (nu) over bar (mu) interaction cross section on water with no pions in the final state. The unfolded flux-averaged measurement using the T2K off-axis near detector is given in double-differential bins of mu(+) momentum and angle. The integrated cross section in a restricted phase space is sigma = (1.11 +/- 0.18) x 10(-38) cm(2) per water molecule. Comparisons with several nuclear models are also presented.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2020). Search for Electron Antineutrino Appearance in a Long-Baseline Muon Antineutrino Beam. Phys. Rev. Lett., 124(16), 161802–8pp.
Abstract: Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40s and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2019). Search for neutral-current induced single photon production at the ND280 near detector in T2K. J. Phys. G, 46(8), 08LT01–16pp.
Abstract: Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron-positron pairs, we achieved 95% pure gamma ray sample from 5.738 x 10(20) protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 x 10(-38) cm(2) (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of < E-v > similar to 0.6 GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2019). Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km. Phys. Rev. D, 99(7), 071103–10pp.
Abstract: We perform a search for light sterile neutrinos using the data from the T2K far detector at a baseline of 295 km, with an exposure of 14.7(7.6) x 10(20) protons on target in neutrino (antineutrino) mode. A selection of neutral-current interaction samples is also used to enhance the sensitivity to sterile mixing. No evidence of sterile neutrino mixing in the 3 + 1 model was found from a simultaneous fit to the charged-current muon, electron and neutral-current neutrino samples. We set the most stringent limit on the sterile oscillation amplitude sin(2)theta(24 )for the sterile neutrino mass splitting Delta m(41)(2 )< 3 x 10(-3 )eV(2)/c(4).
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2019). Search for heavy neutrinos with the T2K near detector ND280. Phys. Rev. D, 100(5), 052006–10pp.
Abstract: This paper reports on the search for heavy neutrinos with masses in the range 140 < M-N < 493 MeV/c(2) using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are N -> l(alpha)(+/-)pi(-/+) and N -> l(alpha)(+)l(beta)nu (-(-))= (alpha, beta = e, mu). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heavy neutrinos to electron-, muon- and tau- flavored currents (U-e(2), U-mu(2), U-tau(2)) as a function of the heavy neutrino mass, e.g., U-e(2) < 10(-9) at 90% C.L. for a mass of 390 MeV/c(2). These constraints are competitive with previous experiments.
|
|