|
Mayoral, C., Recati, A., Fabbri, A., Parentani, R., Balbinot, R., & Carusotto, I. (2011). Acoustic white holes in flowing atomic Bose-Einstein condensates. New J. Phys., 13, 025007–29pp.
Abstract: We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method, which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.
|
|
|
Mayoral, C., Fabbri, A., & Rinaldi, M. (2011). Steplike discontinuities in Bose-Einstein condensates and Hawking radiation: Dispersion effects. Phys. Rev. D, 83(12), 124047–22pp.
Abstract: In this paper we extend the hydrodynamic results of {A. Fabbri and C. Mayoral, Phys. Rev. D 83, 124016 (2011).} and study, analytically, the propagation of Bogoliubov phonons on top of Bose-Einstein condensates with steplike discontinuities in the speed of sound by taking into account dispersion effects. We focus on the Hawking signal in the density-density correlations in the formation of acoustic blackhole-like configurations.
|
|
|
Mauro, S., Balbinot, R., Fabbri, A., & Shapiro, I. L. (2015). Fourth derivative gravity in the auxiliary fields representation and application to the black-hole stability. Eur. Phys. J. Plus, 130(7), 135–8pp.
Abstract: We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in detail and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results clearer. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.
|
|
|
Martone, G. I., Larre, P. E., Fabbri, A., & Pavloff, N. (2018). Momentum distribution and coherence of a weakly interacting Bose gas after a quench. Phys. Rev. A, 98(6), 063617–21pp.
Abstract: We consider a weakly interacting uniform atomic Bose gas with a time-dependent nonlinear coupling constant. By developing a suitable Bogoliubov treatment we investigate the time evolution of several observables, including the momentum distribution, the degree of coherence in the system, and their dependence on dimensionality and temperature. We rigorously prove that the low-momentum Bogoliubov modes remain frozen during the whole evolution, while the high-momentum ones adiabatically follow the change in time of the interaction strength. At intermediate momenta we point out the occurrence of oscillations, which are analogous to Sakharov oscillations. We identify two wide classes of time-dependent behaviors of the coupling for which an exact solution of the problem can be found, allowing for an analytic computation of all the relevant observables. A special emphasis is put on the study of the coherence property of the system in one spatial dimension. We show that the system exhibits a smooth “light-cone effect,” with typically no prethermalization.
|
|
|
Fourdrinoy, J., Robertson, S., James, N., Fabbri, A., & Rousseaux, G. (2022). Correlations on weakly time-dependent transcritical white-hole flows. Phys. Rev. D, 105(8), 085022–14pp.
Abstract: We report observations made on a run of transcritical flows over an obstacle in a narrow channel. Downstream from the obstacle, the flows decelerate from supercritical to subcritical, typically with an undulation on the subcritical side (known in hydrodynamics as an undular hydraulic jump). In the Analogue Gravity context, this transition corresponds to a white-hole horizon. Free-surface deformations are analyzed, mainly via the two-point correlation function which shows the presence of a checkerboard pattern in the vicinity of the undulation. In nongated flows where the white-hole horizon occurs far downstream from the obstacle, this checkerboard pattern is shown to be due to low-frequency fluctuations associated with slow longitudinal movement of the undulation. Tt can thus be considered as an artifact due to a time-varying background. In gated flows, however, the undulation is typically “attached” to the obstacle, and the fluctuations associated with its movement are strongly suppressed. In this case, the observed correlation pattern is likely due to a stochastic ensemble of surface waves, scattering on a background that is essentially stationary.
|
|
|
Fabbri, A., & Pavloff, N. (2018). Momentum correlations as signature of sonic Hawking radiation in Bose-Einstein condensates. SciPost Phys., 4(4), 019–45pp.
Abstract: We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding signal. We consider a set of different experimental procedures and identify the specific issues of each measuring process. We show that some inter-channel correlations, in particular the Hawking quantum-partner one, are particularly well adapted for witnessing quantum non-separability, being resilient to the effects of temperature and/or quantum quenches.
|
|
|
Fabbri, A., & Mayoral, C. (2011). Steplike discontinuities in Bose-Einstein condensates and Hawking radiation: The hydrodynamic limit. Phys. Rev. D, 83(12), 124016–14pp.
Abstract: We present a detailed analytical analysis of the propagation of Bogoliubov phonons on top of Bose-Einstein condensates with spatial and temporal steplike discontinuities in the speed of sound in the hydrodynamic limit. We focus on some features in the correlations patterns, in particular, of density-density correlations. The application to the study of the Hawking signal in the formation of acoustic black hole-like configurations is also discussed.
|
|
|
Fabbri, A., Balbinot, R., & Anderson, P. R. (2016). Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results. Phys. Rev. D, 93(6), 064046–6pp.
Abstract: A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low-frequency limit.
|
|
|
Fabbri, A., & Balbinot, R. (2021). Ramp-up of Hawking Radiation in Bose-Einstein-Condensate Analog Black Holes. Phys. Rev. Lett., 126(11), 111301–6pp.
Abstract: Inspired by a recent experiment by Steinhauer and co-workers, we present a simple model which describes the formation of an acoustic black hole in a Bose-Einstein condensate, allowing an analytical computation of the evolution in time of the corresponding density-density correlator. We show the emergence of analog Hawking radiation out of a “quantum atmosphere” region significantly displaced from the horizon. This is quantitatively studied both at T = 0 and even in the presence of an initial temperature T, as is always the case experimentally.
|
|
|
Euve, L. P., Robertson, S., James, N., Fabbri, A., & Rousseaux, G. (2020). Scattering of Co-Current Surface Waves on an Analogue Black Hole. Phys. Rev. Lett., 124(14), 141101–6pp.
Abstract: We report on what is to our knowledge the first scattering experiment of surface waves on an accelerating transcritical flow, which in the analogue gravity context is described by an effective spacetime with a black-hole horizon. This spacetime has been probed by an incident co-current wave, which partially scatters into an outgoing countercurrent wave on each side of the horizon. The measured scattering amplitudes are compatible with the predictions of the hydrodynamical theory, where the kinematical description in terms of the effective metric is exact.
|
|