Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2024). Fermionic UV models for neutral triple gauge boson vertices. J. High Energy Phys., 07(7), 275–28pp.
Abstract: Searches for anomalous neutral triple gauge boson couplings (NTGCs) provide important tests for the gauge structure of the standard model. In SMEFT (“standard model effective field theory”) NTGCs appear only at the level of dimension-8 operators. While the phenomenology of these operators has been discussed extensively in the literature, renormalizable UV models that can generate these operators are scarce. In this work, we study a variety of extensions of the SM with heavy fermions and calculate their matching to d = 8 NTGC operators. We point out that the complete matching of UV models requires four different CP-conserving d = 8 operators and that the single CPC d = 8 operator, most commonly used by the experimental collaborations, does not describe all possible NTGC form factors. Despite stringent experimental constraints on NTGCs, limits on the scale of UV models are relatively weak, because their contributions are doubly suppressed (being d = 8 and 1-loop). We suggest a series of benchmark UV scenarios suitable for interpreting searches for NTGCs in the upcoming LHC runs, obtain their current limits and provide estimates for the expected sensitivity of the high-luminosity LHC.
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2024). Faking ZZZ vertices at the LHC. J. High Energy Phys., 12(12), 098–20pp.
Abstract: Searches for anomalous neutral triple gauge boson couplings (NTGCs) provide important tests for the gauge structure of the standard model. At the LHC, NTGCs are searched for via the process pp -> ZZ -> 4l, where the two Z-bosons are on-shell. In this paper, we discuss how the same process can occur through tree-level diagrams just adding a vector-like quark (VLQ) to the standard model. Since NTGCs are generated in standard model effective theory (SMEFT) only at 1-loop order, vector like quarks could be an important alternative interpretation to, and background for, NTGC searches. Here, we construct a simple example model, discuss low-energy constraints and estimate current and future sensitivities on the model parameters from pp -> ZZ -> 4l searches.
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2023). SMEFT goes dark: Dark Matter models for four-fermion operators. J. High Energy Phys., 09(9), 081–47pp.
Abstract: We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2022). Mapping the SMEFT to discoverable models. J. High Energy Phys., 09(9), 229–34pp.
Abstract: The matching of specific new physics scenarios onto the SMEFT framework is a well-understood procedure. The inverse problem, the matching of the SMEFT to UV scenarios, is more difficult and requires the development of new methods to perform a systematic exploration of models. In this paper we use a diagrammatic technique to construct in an automated way a complete set of possible UV models (given certain, well specified assumptions) that can produce specific groups of SMEFT operators, and illustrate its use by generating models with no tree-level contributions to four-fermion (4F) operators. Those scenarios, which only contribute to 4F at one-loop order, can contain relatively light particles that could be discovered at the LHC in direct searches. For this class of models, we find an interesting interplay between indirect SMEFT and direct searches. We discuss some examples on how this interplay would look like when combining low-energy observables with the SMEFT Higgs-fermion analyses and searches for resonance at the LHC.
|
Donini, A., Enguita-Vileta, V., Esser, F., & Sanz, V. (2022). Generalising Holographic Superconductors. Adv. High. Energy Phys., 2022, 1785050–19pp.
Abstract: In this paper we propose a generalised holographic framework to describe superconductors. We first unify the description of s-, p-, and d-wave superconductors in a way that can be easily promoted to higher spin. Using a semianalytical procedure to compute the superconductor properties, we are able to further generalise the geometric description of the hologram beyond the AdS-Schwarzschild Black Hole paradigm and propose a set of higher-dimensional metrics which exhibit the same universal behaviour. We then apply this generalised description to study the properties of the condensate and the scaling of the critical temperature with the parameters of the higher-dimensional theory, which allows us to reproduce existing results in the literature and extend them to include a possible description of the newly observed f-wave superconducting systems.
|
Esser, F., Madigan, M., Salas-Bernardez, A., Sanz, V., & Ubiali, M. (2024). Di-Higgs production via axion-like particles. J. High Energy Phys., 10(10), 164–22pp.
Abstract: Due to the pseudo-scalar nature of the axion-like particle (ALP), the CP-conserving production of two Higgs bosons via the ALP necessarily involves an additional Z or gamma boson. We examine the existing constraints from di-Higgs searches at Run 2 of the LHC and find that, despite the presence of extra objects in the final state, these searches are sensitive to a combination of ALP couplings to gluons and three-bosons in the TeV scale range. Additionally, we propose a specialized search strategy incorporating an energetic leptonic Z boson. This refined ALP-induced production process would allow for the identification of the h h -> 4 b-jet final state and could potentially probe the TeV scale using data from Run 2 of the LHC. This production process can also occur through a coupling between the top quark and the ALP. We translate the current constraints on di-Higgs production into new limits on the ALP-top coupling.
|
Esser, F., Madigan, M., Sanz, V., & Ubiali, M. (2023). On the coupling of axion-like particles to the top quark. J. High Energy Phys., 09(9), 063–39pp.
Abstract: In this paper we explore the coupling of a light axion-like particle (ALP) to top quarks. We use high-energy LHC probes, and examine both the direct probe to this coupling in associated production of a top-pair with an ALP, and the indirect probe through loop-induced gluon fusion to an ALP leading to top pairs. Using the latest LHC Run II data, we provide the best limit on this coupling. We also compare these limits with those obtained from loop-induced couplings in diboson final states, finding that the +MET channel is the best current handle on this coupling.
|