|
Argyropoulos, T., Catalan-Lasheras, N., Grudiev, A., Mcmonagle, G., Rodriguez-Castro, E., Syrachev, I., et al. (2018). Design, fabrication, and high-gradient testing of an X-band, traveling-wave accelerating structure milled from copper halves. Phys. Rev. Accel. Beams, 21(6), 061001–11pp.
Abstract: A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV/m at a rf breakdown rate of less than 1.5 x 10(-5) breakdowns/pulse/m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.
|
|
|
DEPFET collaboration(Alonso, O. et al), Boronat, M., Esperante-Pereira, D., Fuster, J., Garcia, I. G., Lacasta, C., et al. (2013). DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider. IEEE Trans. Nucl. Sci., 60(2), 1457–1465.
Abstract: The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.
|
|
|
Esperante-Pereira, D. (2014). DEPFET active pixel sensors for the vertex detector of the Belle-II experiment. J. Instrum., 9, C03004–11pp.
Abstract: Active pixels sensors based on the DEPFET technology will be used for the innermost vertex detector of the future Belle-II experiment. The increased luminosity of the e(+) e(-) SuperKEKB collider entails challenging detector requirements, namely: low material budget, low power consumption, high precision and efficiency, and a large readout rate. The DEPFET active pixel technology has shown to be a suitable solution for this purpose. A review of the different aspects of the detector design (sensors, readout ASICS and supplementary infrastructure) and the results of the latest thinned sensor prototypes (50 μm) are described.
|
|