|
Balbinot, R., Fabbri, A., Dudley, R. A., & Anderson, P. R. (2019). Particle production in the interiors of acoustic black holes. Phys. Rev. D, 100(10), 105021–13pp.
Abstract: Phonon creation inside the horizons of acoustic black holes is investigated using two simple toy models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal. This nonthermality is due to the anomalous scattering that occurs in the interior regions.
|
|
|
Dudley, R. A., Anderson, P. R., Balbinot, R., & Fabbri, A. (2018). Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model. Phys. Rev. D, 98(12), 124011–18pp.
Abstract: Transverse excitations in analogue black holes induce a masslike term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of approximately parallel peaks. For the most part the structure is completely different from that found in the massless case.
|
|
|
Dudley, R. A., Fabbri, A., Anderson, P. R., & Balbinot, R. (2020). Correlations between a Hawking particle and its partner in a 1+1D Bose-Einstein condensate analog black hole. Phys. Rev. D, 102(10), 105005–12pp.
Abstract: The Fourier transform of the density-density correlation function in a Bose-Einstein condensate (BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles and their partners. It can be expressed in terms of <(out)(a) over cap (ext)(up) (out)(a) over cap (int)(up)> where (out)(a) over cap (ext)(up) is the annihilation operator for the Hawking particle and (out)(a) over cap (int)(up) is the corresponding one for the partner. This basic quantity is calculated for three different models for the BEC flow. It is shown that in each model the inclusion of the effective potential in the mode equations makes a significant difference. Furthermore, particle production induced by this effective potential in the interior of the black hole is studied for each model and shown to be nonthermal. An interesting peak that is related to the particle production and is present in some models is discussed.
|
|