HADES Collaboration(Agakishiev, G. et al), Diaz, J., & Gil, A. (2010). Origin of the low-mass electron pair excess in light nucleus-nucleus collisions. Phys. Lett. B, 690(2), 118–122.
Abstract: We report measurements of electron pair production in elementary p + p and d + p reactions at 1.25 GeV/mu with the HADES spectrometer. For the first time, the electron pairs were reconstructed for n + p reactions by detecting the proton spectator from the deuteron breakup. We find that the yield of electron pairs with invariant mass Me+e- > 0.15 GeV/c(2) is about an order of magnitude larger in n + p reactions as compared to p + p. A comparison to model calculations demonstrates that the production mechanism is not sufficiently described yet. The electron pair spectra measured in C + C reactions are compatible with a superposition of elementary n + p and p + p collisions, leaving little room for additional electron pair sources in such light collision systems.
|
HADES Collaboration(Agakishiev, G. et al), Diaz, J., & Gil, A. (2015). Study of the quasi-free np -> np pi(+)pi(-) reaction with a deuterium beam at 1.25 GeV/nucleon. Phys. Lett. B, 750, 184–193.
Abstract: The tagged quasi-free np -> np pi(+)pi(-) reaction has been studied experimentally with the High Acceptance Di-Electron Spectrometer (HADES) at GSI at a deuteron incident beam energy of 1.25 GeV/nucleon (root S similar to 2.42 GeV/c for the quasi-free collision). For the first time, differential distributions of solid statistics for pi(+)pi(-) production in np collisions have been collected in the region corresponding to the large transverse momenta of the secondary particles. The invariant mass and angular distributions for the np -> np pi(+)pi(-) reaction are compared with different models. This comparison confirms the dominance of the t-channel with Delta Delta contribution. It also validates the changes previously introduced in the Valencia model to describe two-pion production data in other isospin channels, although some deviations are observed, especially for the pi(+)pi(-) invariant mass spectrum. The extracted total cross section is also in much better agreement with this model. Our new measurement puts useful constraints for the existence of the conjectured dibaryon resonance at mass M similar to 2.38 GeV and with width Gamma similar to 70 MeV. (C) 2015 The Authors. Published by Elsevier B.V.
|
NEXT Collaboration(Henriques, C. A. O. et al), Gomez-Cadenas, J. J., Alvarez, V., Benlloch-Rodriguez, J., Botas, A., Carcel, S., et al. (2017). Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection. Phys. Lett. B, 773, 663–671.
Abstract: Xe-CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO2 to pure xenon at the level of 0.05-0.1% can reduce significantly the scale of electron diffusion from 10 mm/root m to 2.5 mm/root m, with high impact on the discrimination of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL) yield of Xe-CO2 mixtures, with sub-percent CO2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2.
|
HADES Collaboration(Lapidus, K. et al), Diaz, J., & Gil, A. (2012). The HADES-at-FAIR project. Phys. Atom. Nuclei, 75(5), 589–593.
Abstract: After the completion of the experimental program at SIS18 the HADES setup will migrate to FAIR, where it will deliver high-quality data for heavy-ion collisions in an unexplored energy range of up to 8 A GeV. In this contribution, we briefly present the physics case, relevant detector characteristics and discuss the recently completed upgrade of HADES.
|