|
Renner, J. et al, Romo-Luque, C., Carrion, J. V., Diaz, J., Martinez, A., Querol, M., et al. (2022). Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector. J. Instrum., 17(5), P05044–17pp.
Abstract: New detector approaches in Positron Emission Tomography imaging will play an important role in reducing costs, lowering administered radiation doses, and improving overall performance. PETALO employs liquid xenon as the active scintillating medium and UV-sensitive silicon photomultipliers for scintillation readout. The scintillation time in liquid xenon is fast enough to register time-of-flight information for each detected coincidence, and sufficient scintillation is produced with low enough fluctuations to obtain good energy resolution. The present simulation study examines a full-body-sized PETALO detector and evaluates its potential performance in PET image reconstruction.
|
|
|
SuperNEMO Collaboration(Argyriades, J. et al), Carcel, S., Diaz, J., Monrabal, F., Serra, L., & Yahlali, N. (2010). Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils. Nucl. Instrum. Methods Phys. Res. A, 622(1), 120–128.
Abstract: The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in (TI)-T-208 and Bi-214 for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m(2) of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in (TI)-T-208. After more than one year of background measurement, a surface activity of the scintillators of A((TI)-T-208) = 1.5 μBq/m(2) is reported here. Given this level of background, a larger BiPo detector having 12 m(2) of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A((TI)-T-208) <2 μBq/kg (90% CL.) with a six month measurement.
|
|
|
SuperNEMO Collaboration(Arnold, R. et al), Diaz, J., Monrabal, F., Serra, L., & Yahlali, N. (2010). Probing new physics models of neutrinoless double beta decay with SuperNEMO. Eur. Phys. J. C, 70(4), 927–943.
Abstract: The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double beta decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double beta decay by measuring the decay half-life and the electron angular and energy distributions.
|
|
|
TAPS Collaboration, Piasecki, K., Matulewicz, T., Yahlali, N., Delagrange, H., Diaz, J., et al. (2010). Emission patterns of neutral pions in 40A MeV Ta plus Au reactions. Phys. Rev. C, 81(5), 054912–7pp.
Abstract: Differential cross sections of neutral pions emitted in Ta-181+Au-197 collisions at a beam energy of 39.5A Me V have been measured with the two-arm photon spectrometer (TAPS). The kinetic energy and transverse momentum spectra of neutral pions cannot be properly described in the framework of the thermal model, nor when the reabsorption of pions is accounted for in a phenomenological model. However, high energy and high momentum tails of the pion spectra can be well fitted through thermal distributions with unexpectedly soft temperature parameters below 10 MeV.
|
|