|
Aceti, F., Dai, L. R., & Oset, E. (2016). a(1)(1420) peak as the pi f(0)(980) decay mode of the a(1)(1260). Phys. Rev. D, 94(9), 096015–9pp.
Abstract: We study the decay mode of the a(1)(1260) into a pi(+) in p wave and the f(0)(980) that decays into pi(+)pi(-) in s wave. The mechanism proceeds via a triangular mechanism where the a(1)(1260) decays into K*K-, the K* decays to an external pi(+) and an internal K that fuses with the (K) over bar producing the f(0)(980) resonance. The mechanism develops a singularity at a mass of the a(1)(1260) around 1420 MeV, producing a peak in the cross section of the pp reaction, used to generate the mesonic final state, which provides a natural explanation of all the features observed in the COMPASS experiment, where a peak observed at this energy is tentatively associated to a new resonance called a(1)(1420). On the other hand, the triangular singularity studied here gives rise to a remarkable feature, where a peak is seen for a certain decay channel of a resonance at an energy about 200 MeV higher than its nominal mass.
|
|
|
Dai, L. R., Pavao, R., Sakai, S., & Oset, E. (2018). Anomalous enhancement of the isospin-violating Lambda(1405) production by a triangle singularity in Lambda(c) ->pi(+)pi(0)pi(0)Sigma(0). Phys. Rev. D, 97(11), 116004–10pp.
Abstract: The decay of Lambda(+)(c) into pi(+)pi(0) Lambda(1405) with the Lambda(1405) decay into pi(0)Sigma(0) through a triangle diagram is studied. This process is initiated by Lambda(+)(c) -> pi(+) (K) over bar N-*, and then the (K) over bar (*) decays into (K) over bar (pi) and (K) over bar N produce the Lambda(1405) through a triangle loop containing (K) over bar N-* (K) over bar which develops a singularity around 1890 MeV. This process is prohibited by the isospin symmetry, but the decay into this channel is enhanced by the contribution of the triangle diagram, which is sensitive to the mass of the internal particles. We find a narrow peak in the pi(0)Sigma(0) invariant mass distribution, which originates from the (K) over bar amplitude, but is tied to the mass differences between the charged and neutral (K) over bar or N states. The observation of the unavoidable peak of the triangle singularity in the isospin- violating Lambda(1405) production would provide further support for the hadronic molecular picture of the Lambda(1405) and further information on the (K) over bar N interaction.
|
|
|
Dai, L. R., Xie, J. J., & Oset, E. (2016). B-0 -> D-0 D-0 K-0, B+ -> D-0 D-0 K+, and the scalar DD bound state. Eur. Phys. J. C, 76(3), 121–9pp.
Abstract: We study the B-0 decay to D-0 D-0 K-0 based on the chiral unitary approach, which generates the X(3720) resonance, and we make predictions for the D D invariant mass distribution. From the shape of the distribution, the existence of the resonance below threshold could be induced. We also predict the rate of production of the X(3720) resonance to the D D mass distribution with no free parameters.
|
|
|
Feijoo, A., Dai, L. R., Abreu, L. M., & Oset, E. (2024). Correlation function for the Tbb state: Determination of the binding, scattering lengths, effective ranges, and molecular probabilities. Phys. Rev. D, 109(1), 016014–8pp.
Abstract: We perform a study of the (B*+B0), (BB+)-B-*0 correlation functions using an extension of the local hidden gauge approach which provides the interaction from the exchange of light vector mesons and gives rise to a bound state of these components in I = 0 with a binding energy of about 21 MeV. After that, we face the inverse problem of determining the low energy observables, scattering length and effective range for each channel, the possible existence of a bound state, and, if found, the couplings of such a state to each (B*+B0), (BB+)-B-*0 component as well as the molecular probabilities of each of the channels. We use the bootstrap method to determine these magnitudes and find that, with errors in the correlation function typical of present experiments, we can determine all these magnitudes with acceptable precision. In addition, the size of the source function of the experiment from where the correlation functions are measured can be also determined with a high precision.
|
|
|
Dai, L. R., Dias, J. M., & Oset, E. (2018). Disclosing D* (D)over bar* molecular states in the B-c(-) -> pi(-) J/psi omega decay. Eur. Phys. J. C, 78(3), 210–7pp.
Abstract: We study the B-c(-) -> pi(-) J/omega and B-c(-) -> pi(-) D* (D) over bar* reactions and show that they are related by the presence of two resonances, the X(3940) and X(3930), that are of molecular nature and couple most strongly to D* (D) over bar*, but also to J/psi omega. Because of that, in the J/psi omega mass distribution we find a cusp with large strength at the D* (D) over bar* threshold and predict the ratio of strengths between the peak of the cusp and the maximum of the D* (D) over bar* distribution close to D* (D) over bar* threshold, which are distinct features of the molecular nature of these two resonances.
|
|
|
Dai, L. R., & Oset, E. (2024). Dynamical generation of the scalar f0(500), f0(980), and K0*(700) resonances in the Ds+ → K+ π+ π- reaction. Phys. Rev. D, 109(5), 054008–9pp.
Abstract: We develop a model aimed at understanding the three mass distributions of pairs of mesons in the Cabibbo-suppressed D-s(+) – K+pi(+)pi(-) decay recently measured with high statistics by the BESIII collaboration. The largest contributions to the process come from the D-s(+) -> K+ rho(0) and D-s(+) -> K*(0)pi(+) decay modes, but the D-s(+) -> K-0*(1430)pi(+) and D-s(+) -> K+ f(0) (1370) modes also play a moderate role and all of them are introduced empirically. Instead, the contribution of the f(0)(500), f(0)(980) , and K-0*(700) resonances is introduced dynamically by looking at the decay modes at the quark level, hadronizing q (q) over bar over bar pairs to give two mesons, and allowing these mesons to interact, for which we follow the chiral unitary approach, to finally produce the K+ pi(+) pi(-) final state. While the general features of the mass distributions are fairly obtained, we pay special attention to the specific effects created by the light scalar resonances, which are visible in the low mass region of the pi(+) pi(-) (f(0)(500) and K+ pi(-) K+pi-(K-0*(700)) mass distributions and a narrow peak for pi(+) pi(-) distribution corresponding to f(0)(980) excitation. The contribution of these three resonances is generated by only one parameter. We see the agreement found in these regions as further support for the nature of the light scalar states as dynamically generated from the interaction of pseudoscalar mesons.
|
|
|
Song, J., Dai, L. R., & Oset, E. (2023). Evolution of compact states to molecular ones with coupled channels: The case of the X(3872). Phys. Rev. D, 108(11), 114017–11pp.
Abstract: We study the molecular probability of the X(3872) in the D0 over bar D*0 and D+D*- channels in several scenarios. One of them assumes that the state is purely due to a genuine nonmolecular component. However, it gets unavoidably dressed by the meson components to the point that in the limit of zero binding of the D0 over bar D*0 component becomes purely molecular. Yet, the small but finite binding allows for a nonmolecular state when the bare mass of the genuine state approaches the D0 over bar D*0 threshold, but, in this case the system develops a small scattering length and a huge effective range for this channel in flagrant disagreement with present values of these magnitudes. Next we discuss the possibility to have hybrid states stemming from the combined effect of a genuine state and a reasonable direct interaction between the meson components, where we find cases in which the scattering length and effective range are still compatible with data, but even then the molecular probability is as big as 95%. Finally, we perform the calculations when the binding stems purely from the direct interaction between the meson-meson components. In summary we conclude, that while present data definitely rule out the possibility of a dominant nonmolecular component, the precise value of the molecular probability requires a more precise determination of the scattering length and effective range of the D0 over bar D*0 channel, as well as the measurement of these magnitudes for the D+D*- channel which have not been determined experimentally so far.
|
|
|
Dai, L. R., Song, J., & Oset, E. (2023). Evolution of genuine states to molecular ones: The Tcc(3875) case. Phys. Lett. B, 846, 138200–6pp.
Abstract: We address the issue of the compositeness of hadronic states and demonstrate that starting with a genuine state of nonmolecular nature, but which couples to some meson-meson component to be observable in that channel, if that state is blamed for a bound state appearing below the meson-meson threshold it gets dressed with a meson cloud and it becomes pure molecular in the limit case of zero binding. We discuss the issue of the scales, and see that if the genuine state has a mass very close to threshold, the theorem holds, but the molecular probability goes to unity in a very narrow range of energies close to threshold. The conclusion is that the value of the binding does not determine the compositeness of a state. However, in such extreme cases we see that the scattering length gets progressively smaller and the effective range grows indefinitely. In other words, the binding energy does not determine the compositeness of a state, but the additional information of the scattering length and effective range can provide an answer. We also show that the consideration of a direct attractive interaction between the mesons in addition to having a genuine component, increases the compositeness of the state. Explicit calculations are done for the Tcc(3875) state, but are easily generalized to any hadronic system.
|
|
|
Dai, L. R., & Oset, E. (2018). Helicity amplitudes in B -> D*(nu)over-barl decay. Eur. Phys. J. C, 78(11), 951–11pp.
Abstract: We use a recent formalism of the weak hadronic reactions that maps the transition matrix elements at the quark level into hadronic matrix elements, evaluated with an elaborate angular momentum algebra that allows finally to write the weak matrix elements in terms of easy analytical formulas. In particular they appear explicitly for the different spin third components of the vector mesons involved. We extend the formalism to a general case, with the operator parameter, which suggest to use this magnitude to test different models beyond the standard model. We show that our formalism implies the heavy quark limit and compare our results with calculations that include higher order corrections in heavy quark effective theory. We find very similar results for both approaches in normalized distributions, which are practically identical at the end point of M-inv((nu l)) = m(B) – m(D)*
|
|
|
Dai, L. R., & Oset, E. (2020). Helicity amplitudes in the (B)over-bar -> D*(nu)over-bar(tau)tau decay with V-A breaking in the quark sector. Eur. Phys. J. A, 56(5), 154–8pp.
Abstract: In view of the recent measurement of the F-D*(L) magnitude in the (B) over bar -> D*(nu) over bar (tau)tau reaction we evaluate this magnitude within the standard model and for a family of models with the gamma(mu) – alpha gamma(mu)gamma(5) current structure for the quarks for different values of a. At the same time we evaluate also the transverse contributions, M = -1, M = +1, and find that the difference between the M = -1 and M = +1 contributions is far more sensitive to changes in a than the longitudinal component. These findings should be looked as an incentive to measure the transverse helicities which are bound to be a far more sensitive magnitude to possible new physics than F-D*(L).
|
|