|
Dai, L. R., & Oset, E. (2024). Dynamical generation of the scalar f0(500), f0(980), and K0*(700) resonances in the Ds+ → K+ π+ π- reaction. Phys. Rev. D, 109(5), 054008–9pp.
Abstract: We develop a model aimed at understanding the three mass distributions of pairs of mesons in the Cabibbo-suppressed D-s(+) – K+pi(+)pi(-) decay recently measured with high statistics by the BESIII collaboration. The largest contributions to the process come from the D-s(+) -> K+ rho(0) and D-s(+) -> K*(0)pi(+) decay modes, but the D-s(+) -> K-0*(1430)pi(+) and D-s(+) -> K+ f(0) (1370) modes also play a moderate role and all of them are introduced empirically. Instead, the contribution of the f(0)(500), f(0)(980) , and K-0*(700) resonances is introduced dynamically by looking at the decay modes at the quark level, hadronizing q (q) over bar over bar pairs to give two mesons, and allowing these mesons to interact, for which we follow the chiral unitary approach, to finally produce the K+ pi(+) pi(-) final state. While the general features of the mass distributions are fairly obtained, we pay special attention to the specific effects created by the light scalar resonances, which are visible in the low mass region of the pi(+) pi(-) (f(0)(500) and K+ pi(-) K+pi-(K-0*(700)) mass distributions and a narrow peak for pi(+) pi(-) distribution corresponding to f(0)(980) excitation. The contribution of these three resonances is generated by only one parameter. We see the agreement found in these regions as further support for the nature of the light scalar states as dynamically generated from the interaction of pseudoscalar mesons.
|
|
|
Dai, L. R., Dias, J. M., & Oset, E. (2018). Disclosing D* (D)over bar* molecular states in the B-c(-) -> pi(-) J/psi omega decay. Eur. Phys. J. C, 78(3), 210–7pp.
Abstract: We study the B-c(-) -> pi(-) J/omega and B-c(-) -> pi(-) D* (D) over bar* reactions and show that they are related by the presence of two resonances, the X(3940) and X(3930), that are of molecular nature and couple most strongly to D* (D) over bar*, but also to J/psi omega. Because of that, in the J/psi omega mass distribution we find a cusp with large strength at the D* (D) over bar* threshold and predict the ratio of strengths between the peak of the cusp and the maximum of the D* (D) over bar* distribution close to D* (D) over bar* threshold, which are distinct features of the molecular nature of these two resonances.
|
|
|
Feijoo, A., Dai, L. R., Abreu, L. M., & Oset, E. (2024). Correlation function for the Tbb state: Determination of the binding, scattering lengths, effective ranges, and molecular probabilities. Phys. Rev. D, 109(1), 016014–8pp.
Abstract: We perform a study of the (B*+B0), (BB+)-B-*0 correlation functions using an extension of the local hidden gauge approach which provides the interaction from the exchange of light vector mesons and gives rise to a bound state of these components in I = 0 with a binding energy of about 21 MeV. After that, we face the inverse problem of determining the low energy observables, scattering length and effective range for each channel, the possible existence of a bound state, and, if found, the couplings of such a state to each (B*+B0), (BB+)-B-*0 component as well as the molecular probabilities of each of the channels. We use the bootstrap method to determine these magnitudes and find that, with errors in the correlation function typical of present experiments, we can determine all these magnitudes with acceptable precision. In addition, the size of the source function of the experiment from where the correlation functions are measured can be also determined with a high precision.
|
|
|
Dai, L. R., Xie, J. J., & Oset, E. (2016). B-0 -> D-0 D-0 K-0, B+ -> D-0 D-0 K+, and the scalar DD bound state. Eur. Phys. J. C, 76(3), 121–9pp.
Abstract: We study the B-0 decay to D-0 D-0 K-0 based on the chiral unitary approach, which generates the X(3720) resonance, and we make predictions for the D D invariant mass distribution. From the shape of the distribution, the existence of the resonance below threshold could be induced. We also predict the rate of production of the X(3720) resonance to the D D mass distribution with no free parameters.
|
|
|
Dai, L. R., Pavao, R., Sakai, S., & Oset, E. (2018). Anomalous enhancement of the isospin-violating Lambda(1405) production by a triangle singularity in Lambda(c) ->pi(+)pi(0)pi(0)Sigma(0). Phys. Rev. D, 97(11), 116004–10pp.
Abstract: The decay of Lambda(+)(c) into pi(+)pi(0) Lambda(1405) with the Lambda(1405) decay into pi(0)Sigma(0) through a triangle diagram is studied. This process is initiated by Lambda(+)(c) -> pi(+) (K) over bar N-*, and then the (K) over bar (*) decays into (K) over bar (pi) and (K) over bar N produce the Lambda(1405) through a triangle loop containing (K) over bar N-* (K) over bar which develops a singularity around 1890 MeV. This process is prohibited by the isospin symmetry, but the decay into this channel is enhanced by the contribution of the triangle diagram, which is sensitive to the mass of the internal particles. We find a narrow peak in the pi(0)Sigma(0) invariant mass distribution, which originates from the (K) over bar amplitude, but is tied to the mass differences between the charged and neutral (K) over bar or N states. The observation of the unavoidable peak of the triangle singularity in the isospin- violating Lambda(1405) production would provide further support for the hadronic molecular picture of the Lambda(1405) and further information on the (K) over bar N interaction.
|
|
|
Aceti, F., Dai, L. R., & Oset, E. (2016). a(1)(1420) peak as the pi f(0)(980) decay mode of the a(1)(1260). Phys. Rev. D, 94(9), 096015–9pp.
Abstract: We study the decay mode of the a(1)(1260) into a pi(+) in p wave and the f(0)(980) that decays into pi(+)pi(-) in s wave. The mechanism proceeds via a triangular mechanism where the a(1)(1260) decays into K*K-, the K* decays to an external pi(+) and an internal K that fuses with the (K) over bar producing the f(0)(980) resonance. The mechanism develops a singularity at a mass of the a(1)(1260) around 1420 MeV, producing a peak in the cross section of the pp reaction, used to generate the mesonic final state, which provides a natural explanation of all the features observed in the COMPASS experiment, where a peak observed at this energy is tentatively associated to a new resonance called a(1)(1420). On the other hand, the triangular singularity studied here gives rise to a remarkable feature, where a peak is seen for a certain decay channel of a resonance at an energy about 200 MeV higher than its nominal mass.
|
|