|
Dai, L. R., & Oset, E. (2013). Tests on the molecular structure of f(2)(1270), f'(2) (1525) from psi(nS) and Upsilon(nS) decays. Eur. Phys. J. A, 49(10), 130–6pp.
Abstract: Based on previous studies that support the vector-vector molecular structure of the f(2)'(1270), f 2 (1525), K * 0 2 (1430), f0(1370) and f0(1710) resonances, we make predictions for the.(2S) decay into.(f) f2(1270),.(f) f 2 (1525), K* 0 (892) K * 0 2 (1430) and the radiative decay of.(1S),.(2S),.(2S) into.f2(1270),.f 2 (1525),.f0(1370),.f0(1710). Agreement with experimental data is found for three available ratios, without using free parameters, and predictions are done for other cases.
|
|
|
Aceti, F., Dai, L. R., Geng, L. S., Oset, E., & Zhang, Y. (2014). Meson-baryon components in the states of the baryon decuplet. Eur. Phys. J. A, 50(3), 57–11pp.
Abstract: We apply an extension of the Weinberg compositeness condition on partial waves of L = 1 and resonant states to determine the weight of the meson-baryon component in the Delta(1232) resonance and the other members of the baryon decuplet. We obtain an appreciable weight of pi N in the Delta(1232) wave function, of the order of 60%, which looks more natural when one recalls that experiments on deep inelastic and Drell Yan give a fraction of pi N component of 34% for the nucleon. We also show that, as we go to higher energies in the members of the decuplet, the weights of the meson-baryon component decrease and they already show a dominant part for a genuine, non-meson-baryon, component in the wave function. We write a section to interpret the meaning of the Weinberg sum rule when it is extended to complex energies and another one for the case of an energy-dependent potential.
|
|
|
Dai, L. R., & Oset, E. (2018). Polarization amplitudes in VP decay beyond the Standard Model. Eur. Phys. J. A, 54(12), 219–10pp.
Abstract: We study the amplitudes of the -VP decay for the different polarizations of the vector meson V, using a formalism where the mapping from the quark degrees of freedom to the meson ones is done with the P-3(0) model. We extend the formalism to a case, with the operator -5, that can account for different models beyond the Standard Model and study in detail the -K*0K- reaction for the different polarizations of the K*0. The results are shown in terms of the parameter that differs for each model. We find that is very different for each of the third components of the vector spin, M=+/- 1,0, and in particular the magnitude |M=-1 is very sensitive to the parameter, which makes the investigation of this magnitude very useful to test different models beyond the Standard Model.
|
|
|
Dai, L. R., Pavao, R., Sakai, S., & Oset, E. (2019). tau(-) -> nu tau M1 M2, with M1, M2 pseudoscalar or vector mesons. Eur. Phys. J. A, 55(2), 20–22pp.
Abstract: .We perform a calculation of the -M1M2, with M1,M2 either pseudoscalar or vector mesons using the basic weak interaction and angular momentum algebra to relate the different processes. The formalism also leads to a different interpretation of the role played by G-parity in these decays. We also observe that, while PPp-wave production is compatible with chiral perturbation theory and experiment, VP and VVp-wave production is clearly incompatible with experiment and we develop the formalism also in this case, producing the VP or VV pairs in s-wave. We compare our results with experiment and other theoretical approaches for rates and invariant mass distributions and make predictions for unmeasured decays. We show the value of these reactions, particularly if the M1M2 mass distribution is measured, as a tool to learn about the meson-meson interaction and the nature of some resonances, coupling to two mesons, which are produced in such decays.
|
|
|
Dai, L. R., Wang, G. Y., Chen, X., Wang, E., Oset, E., & Li, D. M. (2019). The B+ -> J/phi omega K+ reaction and D*(D)over-bar* molecular states. Eur. Phys. J. A, 55(3), 36–7pp.
Abstract: We study the B+J/K+ reaction, and show that it is driven by the presence of two resonances, the X(3940) and X(3930), that are of molecular nature and couple most strongly to D*D*, but also to J/. Because of that, in the J/ mass distribution we find a peak related to the excitation of the resonances and a cusp with large strength at the D*D* threshold.
|
|
|
Ikeno, N., Dai, L. R., & Oset, E. (2020). Meson exchange between initial and final state and the R-D ratio in the B-bar -> D nu-bar l (nu_tau-bar tau) reactions. Eur. Phys. J. A, 56(2), 73–12pp.
Abstract: We perform a calculation of the strong interaction effects between the B and D mesons in the B -> D nu l reaction, as a crossing process of reactions with BD in the final state, where the strong interaction between the mesons leads to a bound BD state. We find corrections to the tree level amplitude of the order of 15-25%. We further see the effect of the corrections studied in the R-D ratio for the rates of B -> D nu and B. D decays and find corrections of the order of 10%. Given the claims of 1.5% precision in this ratio from fits to data within the standardmodel, any theoretical model aiming at describing this ratio within the same precision must take into account the corrections described in the present work.
|
|
|
Dai, L. R., & Oset, E. (2020). Helicity amplitudes in the (B)over-bar -> D*(nu)over-bar(tau)tau decay with V-A breaking in the quark sector. Eur. Phys. J. A, 56(5), 154–8pp.
Abstract: In view of the recent measurement of the F-D*(L) magnitude in the (B) over bar -> D*(nu) over bar (tau)tau reaction we evaluate this magnitude within the standard model and for a family of models with the gamma(mu) – alpha gamma(mu)gamma(5) current structure for the quarks for different values of a. At the same time we evaluate also the transverse contributions, M = -1, M = +1, and find that the difference between the M = -1 and M = +1 contributions is far more sensitive to changes in a than the longitudinal component. These findings should be looked as an incentive to measure the transverse helicities which are bound to be a far more sensitive magnitude to possible new physics than F-D*(L).
|
|
|
Molina, R., Dai, L. R., Geng, L. S., & Oset, E. (2020). J/psi decay into phi(omega) and vector-vector molecular states. Eur. Phys. J. A, 56(6), 173–10pp.
Abstract: fBased on the picture that the f(0)(1370), f(0)(1710), f(2)(1270), f(2)'(1525), (K) over bar (2)*(0) (1430) resonances are dynamically generated from the vector-vector interaction, we study the decays J/psi -> phi(omega) f(0)(1370)[f(0)(1710)], J/psi ->phi(omega) f(2)(1270)[f(2)'(1525)], and J/psi -> K*(0)(K) over bar (2)*(0) (1430) and make predictions for seven independent ratios that can be done among them. The starting mechanism is that the J/psi decays into three vectors, followed by the final state interaction of a pair of them. The weights of the different three vector primary channels are obtained from the basic assumption that the J/psi (c (c) over bar) is an SU(3) singlet. By means of only one free parameter we predict four ratios in fair agreement with experiment, make two extra predictions for rates yet unmeasured, and disagree on one data for which only upper bounds are reported. Further measurements are most welcome to complete the information required for these ratios which test the nature of these resonances as dynamically generated.
|
|
|
Song, J., Dai, L. R., & Oset, E. (2022). How much is the compositeness of a bound state constrained by a and r(0)? The role of the interaction range. Eur. Phys. J. A, 58(7), 133–10pp.
Abstract: We present an approach that allows one to obtain information on the compositeness of molecular states from combined information of the scattering length of the hadronic components, the effective range, and the binding energy. We consider explicitly the range of the interaction in the formalism and show it to be extremely important to improve on the formula of Weinberg obtained in the limit of very small binding and zero range interaction. The method allows obtaining good information also in cases where the binding is not small. We explicitly apply it to the case of the deuteron and the D-s0* (2317) and D-s1* (2460) states and determine simultaneously the value of the compositeness within a certain range, as well as get qualitative information on the range of the interaction.
|
|
|
Dai, L. R., Xie, J. J., & Oset, E. (2016). B-0 -> D-0 D-0 K-0, B+ -> D-0 D-0 K+, and the scalar DD bound state. Eur. Phys. J. C, 76(3), 121–9pp.
Abstract: We study the B-0 decay to D-0 D-0 K-0 based on the chiral unitary approach, which generates the X(3720) resonance, and we make predictions for the D D invariant mass distribution. From the shape of the distribution, the existence of the resonance below threshold could be induced. We also predict the rate of production of the X(3720) resonance to the D D mass distribution with no free parameters.
|
|