|
Dai, L. R., & Oset, E. (2018). Helicity amplitudes in B -> D*(nu)over-barl decay. Eur. Phys. J. C, 78(11), 951–11pp.
Abstract: We use a recent formalism of the weak hadronic reactions that maps the transition matrix elements at the quark level into hadronic matrix elements, evaluated with an elaborate angular momentum algebra that allows finally to write the weak matrix elements in terms of easy analytical formulas. In particular they appear explicitly for the different spin third components of the vector mesons involved. We extend the formalism to a general case, with the operator parameter, which suggest to use this magnitude to test different models beyond the standard model. We show that our formalism implies the heavy quark limit and compare our results with calculations that include higher order corrections in heavy quark effective theory. We find very similar results for both approaches in normalized distributions, which are practically identical at the end point of M-inv((nu l)) = m(B) – m(D)*
|
|
|
Dai, L. R., Roca, L., & Oset, E. (2020). Tau decay into tau(t) and a(1)(1260), b(1)(1235), and two K-1(1270). Eur. Phys. J. C, 80(7), 673–9pp.
Abstract: We study the tau -> nu(tau). A decay, with A an axialvector meson. We produce the a(1) (1260) and b(1) (1235) resonances in the Cabibbo favored mode and two K-1 (1270) states in the Cabibbo suppressed mode. We take advantage of previous chiral unitary approach results where these resonances appear dynamically from the vector and pseudoscalar meson interaction in s-wave. Actually two different poles were obtained associated to the K-1(1270) quantum numbers. We find that the unmeasured rates for b(1)(1235) production are similar to those of the a(1)(1260) and for the two K-1 states we suggest to separate the present information on the (K) over bar pi pi invariant masses into (K) over bar*pi and rho K modes, the channels to which these two resonances couple most strongly, predicting that thesemodes peak at different energies and have different widths. These measurements should shed light on the existence of these two K-1 states. In addition, we have gone one step further making a comparison with experimental results of three meson decay channels, letting the vector mesons of our approach decay into pseudoscalars, and we find an overall good agreement with experiment.
|
|
|
Dai, L. R., Toledo, G., & Oset, E. (2020). Searching for a D(D)over-bar bound state with the psi(3770) -> gamma D-0(D)over-bar(0) decay. Eur. Phys. J. C, 80(6), 510–8pp.
Abstract: We perform a calculation of the mass distribution in the psi(3770) -> gamma D (D) over bar decay, studying both the D+D- and D-0(D) over bar (0) decays. The electromagnetic interaction is such that the tree level amplitude is null for the neutral channel, which forces the psi(3770) -> gamma D-0(D) over bar (0) transition to go through a loop involving the D+D- -> D-0(D) over bar (0) scattering amplitude. We take the results for this amplitude from a theoretical model that predicts a D (D) over bar bound state and find a D-0(D) over bar (0) mass distribution in the decay drastically different than phase space. The rates obtained are relatively large and the experiment is easily feasible in the present BESIII facility. The performance of this experiment could provide an answer to the issue of this much searched for state, which is the analogue of the f(0)(980) resonance.
|
|
|
Xie, J. J., Dai, L. R., & Oset, E. (2015). The low lying scalar resonances in the D-0 decays into K-s(0) and f(0)(500), f(0)(980), a(0)(980). Phys. Lett. B, 742, 363–369.
Abstract: The D-0 decay into K-s(0) and a scalar resonance, f(0)(500), f(0)(980), a(0)(980), are studied obtaining the scalar resonances from final state interaction of a pair of mesons produced in a first step in the D-0 decay into K-s(0) and the pair of pseudoscalar mesons. This weak decay is very appropriate for this kind of study because it allows to produce the three resonances in the same decay in a process that is Cabibbo-allowed, hence the rates obtained are large compared to those of (B) over bar (0) decays into J/psi and a scalar meson that have at least one Cabibbo-suppressedvertex. Concretely the a(0)(980) production is Cabibbo-allowedhere, while it cannot be seen in the (B) over bar (0)(s) decay into J/psi a(0)(980) and is doubly Cabibbo-suppressedin the (B) over bar (0) decay into J/psi a(0)(980) and has not been identified there. The fact that the three resonances can be seen in the same reaction, because there is no isospin conservation in the weak decays, offers a unique opportunity to test the ideas of the chiral unitary approach where these resonances are produced from the interaction of pairs of pseudoscalar mesons.
|
|
|
Dai, L. R., Oset, E., & Geng, L. S. (2022). The D-s(+)->pi(+KSKS0)-K-0 reaction and the I=1 partner of the f(0)(1710) state. Eur. Phys. J. C, 82(3), 225–9pp.
Abstract: We have identified the decay modes of the D-s(+)-> pi K+*K+*(-),pi+K*(0)(K) over bar*(0) reactions producing a pion and two vector mesons. The posterior vector-vector interaction generates two resonances that we associate to the f(0)(1710) and the a(0)(1710) recently claimed, and they decay to the observed K+K- or (KSKS0)-K-0 pair, leading to the reactions D-s(+)->pi+K+K-,pi(+KSKS0)-K-0. The results depend on two parameters related to external and internal emission. We determine a narrow region of the parameters consistent with the large N-c limit within uncertainties which gives rise to decay widths in agreement with experiment. With this scenario we make predictions for the branching ratio of the a(0)(1710) contribution to the D-s(+)->pi(K+KS0)-K-0 reaction, finding values within the range of (1.3 +/- 0.4)x10(-3). Comparison of these predictions with coming experimental results on that latter reaction will be most useful to deepen our understanding on the nature of these two resonances.
|
|
|
Dai, L. R., & Oset, E. (2018). Polarization amplitudes in VP decay beyond the Standard Model. Eur. Phys. J. A, 54(12), 219–10pp.
Abstract: We study the amplitudes of the -VP decay for the different polarizations of the vector meson V, using a formalism where the mapping from the quark degrees of freedom to the meson ones is done with the P-3(0) model. We extend the formalism to a case, with the operator -5, that can account for different models beyond the Standard Model and study in detail the -K*0K- reaction for the different polarizations of the K*0. The results are shown in terms of the parameter that differs for each model. We find that is very different for each of the third components of the vector spin, M=+/- 1,0, and in particular the magnitude |M=-1 is very sensitive to the parameter, which makes the investigation of this magnitude very useful to test different models beyond the Standard Model.
|
|
|
Dai, L. R., Dias, J. M., & Oset, E. (2018). Disclosing D* (D)over bar* molecular states in the B-c(-) -> pi(-) J/psi omega decay. Eur. Phys. J. C, 78(3), 210–7pp.
Abstract: We study the B-c(-) -> pi(-) J/omega and B-c(-) -> pi(-) D* (D) over bar* reactions and show that they are related by the presence of two resonances, the X(3940) and X(3930), that are of molecular nature and couple most strongly to D* (D) over bar*, but also to J/psi omega. Because of that, in the J/psi omega mass distribution we find a cusp with large strength at the D* (D) over bar* threshold and predict the ratio of strengths between the peak of the cusp and the maximum of the D* (D) over bar* distribution close to D* (D) over bar* threshold, which are distinct features of the molecular nature of these two resonances.
|
|
|
Molina, R., Dai, L. R., Geng, L. S., & Oset, E. (2020). J/psi decay into phi(omega) and vector-vector molecular states. Eur. Phys. J. A, 56(6), 173–10pp.
Abstract: fBased on the picture that the f(0)(1370), f(0)(1710), f(2)(1270), f(2)'(1525), (K) over bar (2)*(0) (1430) resonances are dynamically generated from the vector-vector interaction, we study the decays J/psi -> phi(omega) f(0)(1370)[f(0)(1710)], J/psi ->phi(omega) f(2)(1270)[f(2)'(1525)], and J/psi -> K*(0)(K) over bar (2)*(0) (1430) and make predictions for seven independent ratios that can be done among them. The starting mechanism is that the J/psi decays into three vectors, followed by the final state interaction of a pair of them. The weights of the different three vector primary channels are obtained from the basic assumption that the J/psi (c (c) over bar) is an SU(3) singlet. By means of only one free parameter we predict four ratios in fair agreement with experiment, make two extra predictions for rates yet unmeasured, and disagree on one data for which only upper bounds are reported. Further measurements are most welcome to complete the information required for these ratios which test the nature of these resonances as dynamically generated.
|
|
|
Dai, L. R., & Oset, E. (2020). Helicity amplitudes in the (B)over-bar -> D*(nu)over-bar(tau)tau decay with V-A breaking in the quark sector. Eur. Phys. J. A, 56(5), 154–8pp.
Abstract: In view of the recent measurement of the F-D*(L) magnitude in the (B) over bar -> D*(nu) over bar (tau)tau reaction we evaluate this magnitude within the standard model and for a family of models with the gamma(mu) – alpha gamma(mu)gamma(5) current structure for the quarks for different values of a. At the same time we evaluate also the transverse contributions, M = -1, M = +1, and find that the difference between the M = -1 and M = +1 contributions is far more sensitive to changes in a than the longitudinal component. These findings should be looked as an incentive to measure the transverse helicities which are bound to be a far more sensitive magnitude to possible new physics than F-D*(L).
|
|
|
Song, J., Dai, L. R., & Oset, E. (2022). How much is the compositeness of a bound state constrained by a and r(0)? The role of the interaction range. Eur. Phys. J. A, 58(7), 133–10pp.
Abstract: We present an approach that allows one to obtain information on the compositeness of molecular states from combined information of the scattering length of the hadronic components, the effective range, and the binding energy. We consider explicitly the range of the interaction in the formalism and show it to be extremely important to improve on the formula of Weinberg obtained in the limit of very small binding and zero range interaction. The method allows obtaining good information also in cases where the binding is not small. We explicitly apply it to the case of the deuteron and the D-s0* (2317) and D-s1* (2460) states and determine simultaneously the value of the compositeness within a certain range, as well as get qualitative information on the range of the interaction.
|
|