|
Xie, J. J., Dai, L. R., & Oset, E. (2015). The low lying scalar resonances in the D-0 decays into K-s(0) and f(0)(500), f(0)(980), a(0)(980). Phys. Lett. B, 742, 363–369.
Abstract: The D-0 decay into K-s(0) and a scalar resonance, f(0)(500), f(0)(980), a(0)(980), are studied obtaining the scalar resonances from final state interaction of a pair of mesons produced in a first step in the D-0 decay into K-s(0) and the pair of pseudoscalar mesons. This weak decay is very appropriate for this kind of study because it allows to produce the three resonances in the same decay in a process that is Cabibbo-allowed, hence the rates obtained are large compared to those of (B) over bar (0) decays into J/psi and a scalar meson that have at least one Cabibbo-suppressedvertex. Concretely the a(0)(980) production is Cabibbo-allowedhere, while it cannot be seen in the (B) over bar (0)(s) decay into J/psi a(0)(980) and is doubly Cabibbo-suppressedin the (B) over bar (0) decay into J/psi a(0)(980) and has not been identified there. The fact that the three resonances can be seen in the same reaction, because there is no isospin conservation in the weak decays, offers a unique opportunity to test the ideas of the chiral unitary approach where these resonances are produced from the interaction of pairs of pseudoscalar mesons.
|
|
|
Xiao, C. W., Dias, J. M., Dai, L. R., Liang, W. H., & Oset, E. (2024). Triangle singularity in the J/ψ → ϕ π+ a−0(π−η) ,ϕ π− a+0(π+η) decays. Phys. Rev. D, 109(7), 074033–11pp.
Abstract: We study the J= psi -> phi pi + a 0 ( 980 ) – ( a – 0 -> pi – eta ) decay, evaluating the double mass distribution in terms of the pi – eta and pi + a – 0 invariant masses. We show that the pi – eta mass distribution exhibits the typical cusp structure of the a 0 ( 980 ) seen in recent high statistics experiments, and the pi + a – 0 spectrum shows clearly a peak around M inv ( pi + a – 0 ) = 1420 MeV, corresponding to a triangle singularity. When integrating over the two invariant masses we find a branching ratio for this decay of the order of 10 – 5 , which is easily accessible in present laboratories. We also call attention to the fact that the signal obtained is compatible with a bump experimentally observed in the eta pi + pi – mass distribution in the J= psi -> phi eta pi + pi – decay and encourage further analysis to extract from there the phi pi + a – 0 and phi pi – a + 0 decay modes.
|
|
|
Song, J., Dai, L. R., & Oset, E. (2022). How much is the compositeness of a bound state constrained by a and r(0)? The role of the interaction range. Eur. Phys. J. A, 58(7), 133–10pp.
Abstract: We present an approach that allows one to obtain information on the compositeness of molecular states from combined information of the scattering length of the hadronic components, the effective range, and the binding energy. We consider explicitly the range of the interaction in the formalism and show it to be extremely important to improve on the formula of Weinberg obtained in the limit of very small binding and zero range interaction. The method allows obtaining good information also in cases where the binding is not small. We explicitly apply it to the case of the deuteron and the D-s0* (2317) and D-s1* (2460) states and determine simultaneously the value of the compositeness within a certain range, as well as get qualitative information on the range of the interaction.
|
|
|
Song, J., Dai, L. R., & Oset, E. (2023). Evolution of compact states to molecular ones with coupled channels: The case of the X(3872). Phys. Rev. D, 108(11), 114017–11pp.
Abstract: We study the molecular probability of the X(3872) in the D0 over bar D*0 and D+D*- channels in several scenarios. One of them assumes that the state is purely due to a genuine nonmolecular component. However, it gets unavoidably dressed by the meson components to the point that in the limit of zero binding of the D0 over bar D*0 component becomes purely molecular. Yet, the small but finite binding allows for a nonmolecular state when the bare mass of the genuine state approaches the D0 over bar D*0 threshold, but, in this case the system develops a small scattering length and a huge effective range for this channel in flagrant disagreement with present values of these magnitudes. Next we discuss the possibility to have hybrid states stemming from the combined effect of a genuine state and a reasonable direct interaction between the meson components, where we find cases in which the scattering length and effective range are still compatible with data, but even then the molecular probability is as big as 95%. Finally, we perform the calculations when the binding stems purely from the direct interaction between the meson-meson components. In summary we conclude, that while present data definitely rule out the possibility of a dominant nonmolecular component, the precise value of the molecular probability requires a more precise determination of the scattering length and effective range of the D0 over bar D*0 channel, as well as the measurement of these magnitudes for the D+D*- channel which have not been determined experimentally so far.
|
|
|
Molina, R., Dai, L. R., Geng, L. S., & Oset, E. (2020). J/psi decay into phi(omega) and vector-vector molecular states. Eur. Phys. J. A, 56(6), 173–10pp.
Abstract: fBased on the picture that the f(0)(1370), f(0)(1710), f(2)(1270), f(2)'(1525), (K) over bar (2)*(0) (1430) resonances are dynamically generated from the vector-vector interaction, we study the decays J/psi -> phi(omega) f(0)(1370)[f(0)(1710)], J/psi ->phi(omega) f(2)(1270)[f(2)'(1525)], and J/psi -> K*(0)(K) over bar (2)*(0) (1430) and make predictions for seven independent ratios that can be done among them. The starting mechanism is that the J/psi decays into three vectors, followed by the final state interaction of a pair of them. The weights of the different three vector primary channels are obtained from the basic assumption that the J/psi (c (c) over bar) is an SU(3) singlet. By means of only one free parameter we predict four ratios in fair agreement with experiment, make two extra predictions for rates yet unmeasured, and disagree on one data for which only upper bounds are reported. Further measurements are most welcome to complete the information required for these ratios which test the nature of these resonances as dynamically generated.
|
|
|
Martinez Torres, A., Garzon, E. J., Oset, E., & Dai, L. R. (2011). Limits to the fixed center approximation to Faddeev equations: The case of the phi(2170). Phys. Rev. D, 83(11), 116002–9pp.
Abstract: The fixed center approximation to the Faddeev equations has been used lately with success in the study of bound systems of three hadrons. It is also important to set the limits of the approach in those problems to prevent proliferation of inaccurate predictions. In this paper, we study the case of the phi(2170), which has been described by means of Faddeev equations as a resonant state of phi and K (K) over bar, and show the problems derived from the use of the fixed center approximation in its study. At the same time, we also expose the limitations of an alternative approach recently proposed.
|
|
|
Martinez Torres, A., Dai, L. R., Koren, C., Jido, D., & Oset, E. (2012). KD, eta Ds interaction in finite volume and the Ds*0(2317) resonance. Phys. Rev. D, 85(1), 014027–11pp.
Abstract: An SU(4) extrapolation of the chiral unitary theory in coupled channels done to study the scalar mesons in the charm sector is extended to produce results in finite volume. The theory in the infinite volume produces dynamically the D-s*0(2317) resonance by means of the coupled channels KD, eta D-s. Energy levels in the finite box are evaluated and, assuming that they would correspond to lattice results, the inverse problem of determining the bound states and phase shifts in the infinite volume from the lattice data is addressed. We observe that it is possible to obtain accurate KD phase shifts and the position of the D-s*0(2317) state, but it requires the explicit consideration of the two coupled channels in the analysis if one goes close to the eta D-s threshold. We also show that the finite volume spectra look rather different in case the D-s*0(2317) is a composite state of the two mesons, or if it corresponds to a non molecular state with a small overlap with the two meson system. We then show that a careful analysis of the finite volume data can shed some light on the nature of the D-s*0(2317) resonance as a KD molecule or otherwise.
|
|
|
Ikeno, N., Dai, L. R., & Oset, E. (2020). Meson exchange between initial and final state and the R-D ratio in the B-bar -> D nu-bar l (nu_tau-bar tau) reactions. Eur. Phys. J. A, 56(2), 73–12pp.
Abstract: We perform a calculation of the strong interaction effects between the B and D mesons in the B -> D nu l reaction, as a crossing process of reactions with BD in the final state, where the strong interaction between the mesons leads to a bound BD state. We find corrections to the tree level amplitude of the order of 15-25%. We further see the effect of the corrections studied in the R-D ratio for the rates of B -> D nu and B. D decays and find corrections of the order of 10%. Given the claims of 1.5% precision in this ratio from fits to data within the standardmodel, any theoretical model aiming at describing this ratio within the same precision must take into account the corrections described in the present work.
|
|
|
Feijoo, A., Molina, R., Dai, L. R., & Oset, E. (2022). Lambda(1405) mediated triangle singularity in the K(-)d -> p Sigma(-) reaction. Eur. Phys. J. C, 82(11), 1028–16pp.
Abstract: We study for the first time the p Sigma(-) -> K- d and K- d -> p Sigma(-) reactions close to threshold and show that they are driven by a triangle mechanism, with the Lambda(1405), a proton and a neutron as intermediate states, which develops a triangle singularity close to the (K) over bard threshold. We find that a mechanism involving virtual pion exchange and the K- p -> pi(+)Sigma(-) amplitude dominates over another one involving kaon exchange and the K- p -> K- p amplitude. Moreover, of the two Lambda(1405) states, the one with higher mass around 1420 MeV, gives the largest contribution to the process. We show that the cross section, well within measurable range, is very sensitive to different models that, while reproducing (K) over barN observables above threshold, provide different extrapolations of the (K) over barN amplitudes below threshold. The observables of this reaction will provide new constraints on the theoretical models, leading to more reliable extrapolations of the (K) over barN amplitudes below threshold and to more accurate predictions of the Lambda(1405) state of lower mass.
|
|
|
Feijoo, A., Dai, L. R., Abreu, L. M., & Oset, E. (2024). Correlation function for the Tbb state: Determination of the binding, scattering lengths, effective ranges, and molecular probabilities. Phys. Rev. D, 109(1), 016014–8pp.
Abstract: We perform a study of the (B*+B0), (BB+)-B-*0 correlation functions using an extension of the local hidden gauge approach which provides the interaction from the exchange of light vector mesons and gives rise to a bound state of these components in I = 0 with a binding energy of about 21 MeV. After that, we face the inverse problem of determining the low energy observables, scattering length and effective range for each channel, the possible existence of a bound state, and, if found, the couplings of such a state to each (B*+B0), (BB+)-B-*0 component as well as the molecular probabilities of each of the channels. We use the bootstrap method to determine these magnitudes and find that, with errors in the correlation function typical of present experiments, we can determine all these magnitudes with acceptable precision. In addition, the size of the source function of the experiment from where the correlation functions are measured can be also determined with a high precision.
|
|