Cepedello, R., Escribano, P., & Vicente, A. (2023). Neutrino masses, flavor anomalies, and muon g-2 from dark loops. Phys. Rev. D, 107(3), 035034–6pp.
Abstract: The lepton sector of the Standard Model is at present haunted by several intriguing anomalies, including an emerging pattern of deviations in b ? sll processes, with hints of lepton flavor universality violation, and a discrepancy in the muon anomalous magnetic moment. More importantly, it cannot explain neutrino oscillation data, which necessarily imply the existence of nonzero neutrino masses and lepton mixings. We propose a model that accommodates all the aforementioned anomalies, induces neutrino masses and provides a testable dark matter candidate. This is achieved by introducing a dark sector contributing to the observables of interest at the 1-loop level. Our setup provides a very economical explanation to all these open questions in particle physics and is compatible with the current experimental constraints.
|
Cepedello, R., Deppisch, F. F., Gonzalez, L., Hati, C., & Hirsch, M. (2019). Neutrinoless Double-Beta Decay with Nonstandard Majoron Emission. Phys. Rev. Lett., 122(18), 181801–6pp.
Abstract: We present a novel mode of neutrinoless double-beta decay with emission of a light Majoron-like scalar particle phi. We assume it couples via an effective seven-dimensional operator with a (V + A) lepton current and (V +/- A) quark currents leading to a long-range contribution that is unsuppressed by the light neutrino mass. We calculate the total double-beta decay rate and determine the fully differential shape for this mode. We find that future double-beta decay searches are sensitive to scales of the order Lambda(NP) approximate to 1 TeV for the effective operator and a light scalar m(phi) < 0.2 MeV, based on ordinary double-beta decay Majoron searches. The angular and energy distributions can deviate considerably from that of two-neutrino double-beta decay, which is the main background. We point out possible ultraviolet completions where such an effective operator can emerge.
|
Arbelaez, C., Carcamo Hernandez, A. E., Cepedello, R., Hirsch, M., & Kovalenko, S. (2019). Radiative type-I seesaw neutrino masses. Phys. Rev. D, 100(11), 115021–7pp.
Abstract: We discuss a radiative type-I seesaw. In these models, the radiative generation of Dirac neutrino masses allows to explain the smallness of the observed neutrino mass scale for rather light right-handed neutrino masses in a type-1 seesaw. We first present the general idea in a model-independent way. This allows us to estimate the typical scale of right-handed neutrino mass as a function of the number of loops. We then present two example models, at the one- and two-loop level, which we use to discuss neutrino masses and lepton-flavor-violating constraints in more detail. For the two-loop example, right-handed neutrino masses must lie below 100 GeV, thus making this class of models testable in heavy neutral lepton searches.
|
Centelles Chulia, S., Cepedello, R., Peinado, E., & Srivastava, R. (2020). Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries. Chin. Phys. C, 44(8), 083110–7pp.
Abstract: We demonstrate that a scotogenic dark symmetry can be obtained as a residual subgroup of the global U(1)(B-L) symmetry already present in the Standard Model. In addition, we propose a general framework in which the U(1)(B-L) symmetry is spontaneously broken into an even Z(2n) subgroup, setting the general conditions for neutrinos to be Majorana and for dark matter stability to exist in terms of the residual Z(2n). As an example, under this general framework, we build a class of simple models where, in a scotogenic manner, the dark matter candidate is the lightest particle running inside the mass loop of a neutrino. The global U(1)(B-L) symmetry in our framework, being anomaly free, can also be gauged in a straightforward manner leading to a richer phenomenology.
|
Arbelaez, C., Carcamo Hernandez, A. E., Cepedello, R., Kovalenko, S., & Schmidt, I. (2020). Sequentially loop suppressed fermion masses from a single discrete symmetry. J. High Energy Phys., 06(6), 043–24pp.
Abstract: We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2023). SMEFT goes dark: Dark Matter models for four-fermion operators. J. High Energy Phys., 09(9), 081–47pp.
Abstract: We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.
|
Cepedello, R., Fonseca, R. M., & Hirsch, M. (2018). Systematic classification of three-loop realizations of the Weinberg operator. J. High Energy Phys., 10(10), 197–34pp.
Abstract: We study systematically the decomposition of the Weinberg operator at three-loop order. There are more than four thousand connected topologies. However, the vast majority of these are infinite corrections to lower order neutrino mass diagrams and only a very small percentage yields models for which the three-loop diagrams are the leading order contribution to the neutrino mass matrix. We identify 73 topologies that can lead to genuine three-loop models with fermions and scalars, i.e. models for which lower order diagrams are automatically absent without the need to invoke additional symmetries. The 73 genuine topologies can be divided into two sub-classes: normal genuine ones (44 cases) and special genuine topologies (29 cases). The latter are a special class of topologies, which can lead to genuine diagrams only for very specific choices of fields. The genuine topologies generate 374 diagrams in the weak basis, which can be reduced to only 30 distinct diagrams in the mass eigenstate basis. We also discuss how all the mass eigenstate diagrams can be described in terms of only five master integrals. We present some concrete models and for two of them we give numerical estimates for the typical size of neutrino masses they generate. Our results can be readily applied to construct other d = 5 neutrino mass models with three loops.
|
Centelles Chulia, S., Cepedello, R., Peinado, E., & Srivastava, R. (2019). Systematic classification of two-loop d=4 Dirac neutrino mass models and the Diracness-dark matter stability connection. J. High Energy Phys., 10(10), 093–33pp.
Abstract: We provide a complete systematic classification of all two-loop realizations of the dimension four operator for Dirac neutrino masses. Our classification is multi-layered, starting first with a classification in terms of all possible distinct two loop topologies. Then we discuss the possible diagrams for each topology. Model-diagrams originating from each diagram are then considered. The criterion for genuineness is also defined and discussed at length. Finally, as examples, we construct two explicit models which also serve to highlight the intimate connection between the Dirac nature of neutrinos and the stability of dark matter.
|
Alvarez, A., Cepedello, R., Hirsch, M., & Porod, W. (2022). Temperature effects on the Z(2) symmetry breaking in the scotogenic model. Phys. Rev. D, 105(3), 035013–8pp.
Abstract: It is well known that the scotogenic model for neutrino mass generation can explain correctly the relic abundance of cold dark matter. There have been claims in the literature that an important part of the parameter space of the simplest scotogentic model can be constrained by the requirement that no Z(2)-breaking must occur in the early universe. Here we show that this requirement does not give any constraints on the underlying parameter space at least in those parts, where we can trust perturbation theory. To demonstrate this, we have taken into account the proper decoupling of heavy degrees of freedom in both the thermal potential and in the RGE evolution.
|
Beltran, R., Cepedello, R., & Hirsch, M. (2023). Tree-level UV completions for NRSMEFT d=6 and d=7 operators. J. High Energy Phys., 08(8), 31pp.
Abstract: We study ultra-violet completions for operators in standard model effective field theory extended with right-handed neutrinos (NRSMEFT). Using a diagrammatic method, we generate systematically lists of possible tree-level completions involving scalars, fermions or vectors for all operators at d = 6 and d = 7, which contain at least one right-handed neutrino. We compare our lists of possible UV models to the ones found for pure SMEFT. We also discuss how the observation of LNV processes via NRSMEFT operators at the LHC can be related to Majorana neutrino masses of the standard model neutrinos.
|