|
Celis, A., Jung, M., Li, X. Q., & Pich, A. (2013). Sensitivity to charged scalars in B -> D-(*)tau nu(tau) and B -> tau nu(tau) decays. J. High Energy Phys., 01(1), 054–27pp.
Abstract: We analyze the recent experimental evidence for an excess of tau-lepton production in several exclusive semileptonic B-meson decays in the context of two-Higgs-doublet models. These decay modes are sensitive to the exchange of charged scalars and constrain strongly their Yukawa interactions. While the usual Type-II scenario cannot accommodate the recent BaBar data, this is possible within more general models in which the charged-scalar couplings to up-type quarks are not as suppressed. Both the B -> D-(*)tau nu(tau) and the B -> tau nu(tau) data can be fitted within the framework of the Aligned Two-Higgs-Doublet Model, but the resulting parameter ranges are in conflict with the constraints from leptonic charm decays. This could indicate a departure from the family universality of the Yukawa couplings, beyond their characteristic fermion mass dependence. We discuss several new observables that are sensitive to a hypothetical charged-scalar contribution, demonstrating that they are well suited to distinguish between different scenarios of new physics in the scalar sector, and also between this group and models with different Dirac structures; their experimental study would therefore shed light on the relevance of scalar exchanges in semileptonic b -> c tau(-)(nu) over bar (tau) transitions.
|
|
|
Celis, A., Ilisie, V., & Pich, A. (2013). LHC constraints on two-Higgs doublet models. J. High Energy Phys., 07(7), 053–44pp.
Abstract: A new Higgs-like boson with mass around 126 GeV has recently been discovered at the LHC. The available data on this new particle is analyzed within the context of two-Higgs doublet models without tree-level flavour-changing neutral currents. Keeping the generic Yukawa structure of the Aligned Two-Higgs Doublet Model framework, we study the implications of the LHC data on the allowed scalar spectrum. We analyze both the CP-violating and CP-conserving cases, and a few particular limits with a reduced number of free parameters, such as the usual models based on discrete Z(2) symmetries.
|
|
|
Celis, A., Ilisie, V., & Pich, A. (2013). Towards a general analysis of LHC data within two-Higgs-doublet models. J. High Energy Phys., 12(12), 095–32pp.
Abstract: The data accumulated so far confirm the Higgs-like nature of the new boson discovered at the LHC. The Standard Model Higgs hypothesis is compatible with the collider results and no significant deviations from the Standard Model have been observed neither in the flavour sector nor in electroweak precision observables. We update the LHC and Tevatron constraints on CP-conserving two-Higgs-doublet models without tree-level flavour-changing neutral currents. While the relative sign between the top Yukawa and the gauge coupling of the 126 GeV Higgs is found be the same as in the SM, at 90% CL, there is a sign degeneracy in the determination of its bottom and tau Yukawa couplings. This results in several disjoint allowed regions in the parameter space. We show how generic sum rules governing the scalar couplings determine the properties of the additional Higgs bosons in the different allowed regions. The role of electroweak precision observables, low-energy flavour constraints and LHC searches for additional scalars to further restrict the available parameter space is also discussed.
|
|
|
Celis, A., Cirigliano, V., & Passemar, E. (2014). Lepton flavor violation in the Higgs sector and the role of hadronic tau-lepton decays. Phys. Rev. D, 89(1), 013008–19pp.
Abstract: It has been pointed out recently that current low-energy constraints still allow for sizable flavor-changing decay rates of the 125 GeV boson into leptons, h -> tau l (l = e, mu). In this work we discuss the role of hadronic tau-lepton decays in probing lepton flavor violating couplings in the Higgs sector. At low energy, the effective Higgs coupling to gluons induced by heavy quarks contributes to hadronic tau decays, establishing a direct connection with the relevant process at the LHC, pp(gg) -> h -> tau l. Semileptonic transitions like tau -> l pi pi are sensitive to flavor-changing scalar couplings, while decays such as tau -> l eta((l)) probe pseudoscalar couplings, thus providing a useful low-energy handle to disentangle possible Higgs flavor violating signals at the LHC. As part of our analysis, we provide an appropriate description of all the relevant hadronic matrix elements needed to describe Higgs mediated tau -> pi pi transitions, improving over previous treatments in the literature.
|
|
|
Celis, A., Cirigliano, V., & Passemar, E. (2014). Model-discriminating power of lepton flavor violating tau decays. Phys. Rev. D, 89(9), 095014–14pp.
Abstract: Within an effective field theory framework, we discuss the possibility to discriminate among different operators that contribute to lepton flavor violating (LFV) tau decays. Correlations among decay rates in different channels are shown to provide a basic handle to unravel the origin of LFV in these processes. More information about the underlying dynamics responsible for LFV can be gathered from differential distributions in three-body decays like tau -> μpi pi or tau -> 3 mu: these are considered in some detail. We incorporate in our analysis recent developments in the determination of the hadronic form factors for tau -> μpi pi. Future prospects for the observation of LFV tau decays and its interpretation are also discussed.
|
|
|
Celis, A., Fuentes-Martin, J., & Serodio, H. (2014). Effective aligned 2HDM with a DFSZ-like invisible axion. Phys. Lett. B, 737, 185–190.
Abstract: We discuss the possibility of having a non-minimal scalar sector at the weak scale within the framework of invisible axion models. To frame our discussion we consider an extension of the Dine-Fischler-Srednicki-Zhitnitsky invisible axion model with two additional Higgs doublets blind under the Peccei-Quinn symmetry. Due to mixing effects among the scalar fields, it is possible to obtain a rich scalar sector at the weak scale in certain decoupling limits of the theory. In particular, this framework provides an ultraviolet completion of the so-called aligned two-Higgs-doublet model and solves the strong CP problem. The axion properties and the smallness of active neutrino masses are also discussed.
|
|
|
Celis, A., Fuentes-Martin, J., & Serodio, H. (2014). A class of invisible axion models with FCNCs at tree level. J. High Energy Phys., 12(12), 167–53pp.
Abstract: We build a class of invisible axion models with tree-level Flavor Changing Neutral Currents completely controlled by the fermion mixing matrices. The scalar sector of these models contains three-Higgs doublets and a complex scalar gauge singlet, with the same fermionic content as in the Standard Model. A horizontal Peccei-Quinn symmetry provides a solution to the strong CP problem and predicts the existence of a very light and weakly coupled pseudo-Goldstone boson, the invisible axion or familon. A phenomenological analysis is performed taking into account familon searches in rare kaon and muon decays, astrophysical considerations and axion searches via axion-photon conversion. Drastic differences are found in the axion properties of different models due to the strong hierarchy of the CKM matrix, making some of the models considered much more constrained than others. We also obtain that a rich variety of these models avoid the domain wall problem. A possible mechanism to protect the solution to the strong CP problem against gravitational effects is also discussed.
|
|
|
Celis, A., Fuentes-Martin, J., & Serodio, H. (2015). An invisible axion model with controlled FCNCs at tree level. Phys. Lett. B, 741, 117–123.
Abstract: We derive the necessary conditions to build a class of invisible axion models with Flavor Changing Neutral Currents at tree-level controlled by the fermion mixing matrices and present an explicit model implementation. A horizontal Peccei-Quinn symmetry provides a solution to the strong CP problem via the Peccei-Quinn mechanism and predicts a cold dark mater candidate, the invisible axion or familon. The smallness of active neutrino masses can be explained via a type I seesaw mechanism, providing a dynamical origin for the heavy seesaw scale. The possibility to avoid the domain wall problem stands as one of the most interesting features of the type of models considered. Experimental limits relying on the axion-photon coupling, astrophysical considerations and familon searches in rare kaon and muon decays are discussed.
|
|
|
Abbas, G., Celis, A., Li, X. Q., Lu, J., & Pich, A. (2015). Flavour-changing top decays in the aligned two-Higgs-doublet model. J. High Energy Phys., 06(6), 005–26pp.
Abstract: We perform a complete one-loop computation of the two-body flavour-changing top decays t --> ch and t --> cV (V = gamma, Z), within the aligned two-Higgs-doublet model. We evaluate the impact of the model parameters on the associated branching ratios, taking into account constraints from flavour data and measurements of the Higgs properties. Assuming that the 125 GeV Higgs corresponds to the lightest CP-even scalar of the CP-conserving aligned two-Higgs-doublet model, we find that the rates for such flavour-changing top decays lie below the expected sensitivity of the future high-luminosity phase of the LHC. Measurements of the Higgs signal strength in the di-photon channel are found to play an important role in limiting the size of the t --> ch decay rate when the charged scalar of the model is light.
|
|
|
Celis, A., Fuentes-Martin, J., Jung, M., & Serodio, H. (2015). Family nonuniversal Z ' models with protected flavor-changing interactions. Phys. Rev. D, 92(1), 015007–17pp.
Abstract: We define a new class of Z' models with neutral flavor-changing interactions at tree level in the down-quark sector. They are related in an exact way to elements of the quark mixing matrix due to an underlying flavored U(1)' gauge symmetry, rendering these models particularly predictive. The same symmetry implies lepton-flavor nonuniversal couplings, fully determined by the gauge structure of the model. Our models allow us to address presently observed deviations from the standard model and specific correlations among the new physics contributions to the Wilson coefficients C-9, 10((')l) can be tested in b -> sl(+)l(-) transitions. We furthermore predict lepton-universality violations in Z' decays, testable at the LHC.
|
|