|
Boito, D., Cata, O., Golterman, M., Jamin, M., Maltman, K., Osborne, J., et al. (2011). New determination of alpha(s) from hadronic tau decays. Phys. Rev. D, 84(11), 113006–19pp.
Abstract: We present a new framework for the extraction of the strong coupling from hadronic tau decays through finite-energy sum rules. Our focus is on the small, but still significant nonperturbative effects that, in principle, affect both the central value and the systematic error. We employ a quantitative model in order to accommodate violations of quark-hadron duality, and enforce a consistent treatment of the higher-dimensional contributions of the operator product expansion to our sum rules. Using 1998 OPAL data for the nonstrange isovector vector and axial-vector spectral functions, we find the n(f) = 3 values alpha(s)(m(tau)(2)) = 0.307 +/- 0.019 in fixed-order perturbation theory, and 0.322 +/- 0.026 in contour-improved perturbation theory. For comparison, the original OPAL analysis of the same data led to the values 0.324 +/- 0.014 (fixed order) and 0.348 +/- 0.021 (contour improved).
|
|
|
Buchalla, G., Cata, O., Celis, A., Knecht, M., & Krause, C. (2018). Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian. Nucl. Phys. B, 928, 93–106.
Abstract: Employing background-field method and super-heat-kernel expansion, we compute the complete oneloop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
|
|
|
Cappiello, L., Cata, O., & D'Ambrosio, G. (2012). Holographic approach to low-energy weak interactions of mesons. Phys. Rev. D, 85(1), 015003–13pp.
Abstract: We apply the double-trace formalism to incorporate nonleptonic weak interactions of mesons into holographic models of the strong interactions. We focus our attention upon Delta S = 1 nonleptonic kaon decays. By working with a Yang-Mills-Chern-Simons 5-dimensional action, we explicitly show how, at low energies, one recovers the Delta S = 1 weak chiral Lagrangian for both the anomalous and nonanomalous sectors. We provide definite predictions for the low-energy coefficients in terms of the AdS metric and argue that the double-trace formalism is a 5-dimensional avatar of the Weak Deformation Model introduced long ago by Ecker et al. As a significant phenomenological application, we reassess the K -> 3 pi decays in the light of the holographic model. Previous models found a fine-tuned cancellation of resonance exchange in these decays, which was both conceptually puzzling and quantitatively in disagreement with experimental results. The holographic model we build is an illustrative counterexample showing that the cancellation encountered in the literature is not generic but a model-dependent statement and that agreement with experiment can be obtained.
|
|
|
Cappiello, L., Cata, O., & D'Ambrosio, G. (2011). Hadronic light by light contribution to the (g-2)(mu) with holographic models of QCD. Phys. Rev. D, 83(9), 093006–19pp.
Abstract: We study the anomalous electromagnetic pion form factor F-pi 0 gamma*gamma* with a set of holographic models. By comparing with the measured value of the linear slope, some of these models can be ruled out. From the remaining models, we obtain predictions for the low-energy quadratic slope parameters of F-pi 0 gamma*gamma* , currently out of experimental reach but testable in the near future. We find it particularly useful to encode this low-energy information in a form factor able to satisfy also QCD short-distance constraints. We choose the form factor introduced by D'Ambrosio, Isidori, and Portoles in kaon decays, which has the right short distance for a particular value of the quadratic slope, which is later shown to be compatible with our holographic predictions. We then turn to a determination of the (dominant) pion exchange diagram in the hadronic light by light scattering contribution to the muon anomalous magnetic moment. We quantify the theoretical uncertainty in (g – 2)(mu) coming from the different input we use: QCD short distances, experimental input, and low-energy holographic predictions. We also test the pion-pole approximation. Our final result is a(mu)(pi 0) = 6: 54(25) x 10(-10), where the error is driven by the linear slope of F-pi 0 gamma*gamma* , soon to be measured with precision at KLOE-2. Our numerical analysis also indicates that large values of the magnetic susceptibility chi 0 are disfavored, therefore pointing at a mild effect from the pion off-shellness. However, in the absence of stronger bounds on chi 0, an additional (10-15)% systematic uncertainty on the previous value for a(mu)(pi 0) cannot be excluded.
|
|
|
Cappiello, L., Cata, O., & D'Ambrosio, G. (2010). Antisymmetric tensors in holographic approaches to QCD. Phys. Rev. D, 82(9), 095008–13pp.
Abstract: We study real (massive) antisymmetric tensors of rank two in holographic models of QCD based on the gauge/string duality. Our aim is to understand in detail how the anti-de Sitter/conformal field theory correspondence describes correlators with tensor currents in QCD. To this end we study a set of bootstrapped correlators with spin-1 vector and tensor currents, imposing matching to QCD at the partonic level. We show that a consistent description of this set of correlators yields a very predictive picture. For instance, it imposes strong constraints on infrared boundary conditions and precludes the introduction of dilatonic backgrounds as a mechanism to achieve linear confinement. Additionally, correlators with tensor currents turn out to be especially sensitive to chiral symmetry breaking, thus offering an ideal testing ground for genuine QCD effects. Several phenomenological consequences are explored, such as the nontrivial interplay between 1(+-) states and conventional 1(--) vector mesons.
|
|
|
Cappiello, L., Cata, O., D'Ambrosio, G., & Gao, D. N. (2012). K+ -> pi(+) pi(0)e(+) e(-): a novel short-distance probe. Eur. Phys. J. C, 72(1), 1872–16pp.
Abstract: We study the decay K+ -> pi(+) pi(0)e(+) e(-), currently under analysis by the NA62 Collaboration at CERN. In particular, we provide a detailed analysis of the Dalitz plot for the long-distance, gamma*-mediated, contributions (Brems-strahlung, direct emission and its interference). We also examine a set of asymmetries to isolate genuine short-distance effects. While we show that charge asymmetries are not required to test short distances, they provide the best environment for its detection. This constitutes by itself a strong motivation for NA62 to study K- decays in the future. We therefore provide a detailed study of different charge asymmetries and the corresponding estimated signals. Whenever possible, we make contact with the related processes K+ -> pi(+) pi(0)gamma and K-L -> pi(+) pi(0)e(+) e(-) and discuss the advantages of K+ -> pi(+) pi(0)e(+) e(-) over them.
|
|
|
Cata, O., & Kamenik, J. F. (2011). Electroweak precision observables at one loop in Higgsless models. Phys. Rev. D, 83(5), 053010–9pp.
Abstract: We study the viability of generic Higgsless models at low energies when compliance with electroweak precision observables and unitarity constraints up to the TeV scale are imposed. Our analysis shows that consistency with S and T can be achieved at the one-loop level even with a single light vector state, m(V) less than or similar to 500 GeV. However, this scenario turns out to be strongly disfavored when direct resonance searches at the Tevatron are also taken into account. We show that a fully consistent picture can be obtained if an axial state is introduced. Interestingly, mV is still predicted to be light (below 1 TeV) while typical values of m(A) span over the window 1.2m(V) <= m(A) <= 1.4m(V). Our results for the vector channel are rather robust and well within the reach of present-day colliders, while the axial channel is more loosely constrained.
|
|