|
Carames, T. F., Fontoura, C. E., Krein, G., Tsushima, K., Vijande, J., & Valcarce, A. (2016). Hadronic molecules with a (D)over-bar meson in a medium. Phys. Rev. D, 94(3), 034009–10pp.
Abstract: We study the effect of a hot and dense medium on the binding energy of hadronic molecules with open-charm mesons. We focus on a recent chiral quark-model-based prediction of a molecular state in the N (D) over bar system. We analyze how the two-body thresholds and the hadron-hadron interactions are modified when quark and meson masses and quark-meson couplings change in a function of the temperature and baryon density according to predictions of the Nambu-Jona-Lasinio model. We find that in some cases the molecular binding is enhanced in medium as compared to their free-space binding. We discuss the consequences of our findings for the search for exotic hadrons in high-energy heavy-ion collisions as well as in the forthcoming facilities FAIR or J-PARC.
|
|
|
Carames, T. F., Fontoura, C. E., Krein, G., Vijande, J., & Valcarce, A. (2018). Charmed baryons in nuclear matter. Phys. Rev. D, 98(11), 114019–9pp.
Abstract: We study the temperature and baryon density dependence of the masses of the lightest charmed baryons Lambda(c), Sigma(c) and Sigma(c)*. We also look at the effects of the temperature and baryon density on the binding energies of the Lambda N-c and Lambda(c)Lambda(c) systems. Baryon masses and baryon-baryon interactions are evaluated within a chiral constituent quark model. Medium effects are incorporated in those parameters of the model related to the dynamical breaking of chiral symmetry, which are the masses of the constituent quarks, the sigma and pi meson masses, and quark-meson couplings. We find that while the in-medium Lambda(c) mass decreases monotonically with temperature, those of Sigma(c) and Sigma(c)* have a nonmonotonic dependence. These features can be understood in terms of a simple group theory analysis regarding the one-gluon exchange interaction in those hadrons. The in-medium Lambda N-c and Lambda(c)Lambda(c) interactions are governed by a delicate balance involving a stronger attraction due to the decrease of the sigma meson mass, suppression of coupled-channel effects and lower thresholds, leading to shallow bound states with binding energies of a few MeV. The Lambda(c) baryon could possibly be bound to a large nucleus, in qualitative agreement with results based on relativistic mean field models or QCD sum rules. Ongoing experiments at RHIC or LHCb or the planned ones at FAIR and J-PARC may take advantage of the present results.
|
|
|
Carames, T. F., Valcarce, A., & Vijande, J. (2012). Too many X's, Y's and Z's? Phys. Lett. B, 709(4-5), 358–361.
Abstract: A large number of new states have been reported during the last few years in charmonium spectroscopy above the charmed meson production threshold. They have been called X's, Y's, and Z's. We reflect on the influence of thresholds on heavy meson spectroscopy comparing different flavor sectors and quantum numbers. The validity of a quark-model picture above open-flavor thresholds would severely restrict the number of channels that may lodge meson-meson molecules.
|
|
|
Carames, T. F., Vijande, J., & Valcarce, A. (2019). Exotic bc(q)over-bar(q)over-bar four-quark states. Phys. Rev. D, 99(1), 014006–9pp.
Abstract: We carry out a systematic study of exotic QQ'(q) over bar(q) over bar four-quark states containing distinguishable heavy flavors, b and c. Different generic constituent models are explored in an attempt to extract general conclusions. The results are robust, predicting the same sets of quantum numbers as the best candidates to lodge bound states independently of the model used, the isoscalar J(P) = 0(+) and J(P) = 1(+) states. The first state would be strong and electromagnetic-interaction stable, while the second would decay electromagnetically to (B) over barD gamma. Isovector states are found to be unbound, preventing the existence of charged partners. The interest on exotic heavy-light tetraquarks with nonidentical heavy flavors comes reinforced by the recent estimation of the production rate of the isoscalar bc (u) over bar(d) over bar J(P) = 1(+) state, 2 orders of magnitude larger than that of the bb (u) over bar(d) over bar analogous state.
|
|
|
Vijande, J., Valcarce, A., Carames, T. F., & Garcilazo, H. (2013). Heavy Hadron Spectroscopy: A Quark Model Perspective. Int. J. Mod. Phys. E, 22(5), 1330011–25pp.
Abstract: We present recent results of hadron spectroscopy and hadron hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher-order hock space components in the hadron spectra and the connection of this extension with the hadron-hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about the low-energy realization of the theory.
|
|
|
Vijande, J., Valcarce, A., Carames, T. F., & Garcilazo, H. (2013). Heavy hadron spectroscopy: A quark model perspective. Nucl. Phys. A, 914, 472–481.
Abstract: We present recent results of hadron spectroscopy and hadron-hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher order Fock space components in the hadron spectra and the connection of this extension with the hadron-hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory.
|
|
|
Vijande, J., Valcarce, A., Carames, T. F., & Richard, J. M. (2014). Multiquark Systems. Few-Body Syst., 55(8-10), 675–681.
Abstract: In this talk we tackle the description of hadron spectroscopy in terms of the constituent quark model. We focus on the mesonic charm sector, where several of the new reported resonances seem to defy their classification as simple quark-antiquark states. We pay special attention to higher order Fock space components in describing excited states of the meson spectra in close connection with the hadron-hadron interaction. The main goal of the present study is a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory.
|
|