|
Bierenbaum, I., Buchta, S., Draggiotis, P., Malamos, I., & Rodrigo, G. (2013). Tree-loop duality relation beyond single poles. J. High Energy Phys., 03(3), 025–24pp.
Abstract: We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.
|
|
|
Buchta, S., Chachamis, G., Draggiotis, P., Malamos, I., & Rodrigo, G. (2014). On the singular behaviour of scattering amplitudes in quantum field theory. J. High Energy Phys., 11(11), 014–13pp.
Abstract: We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.
|
|
|
Buchta, S., Chachamis, G., Draggiotis, P., & Rodrigo, G. (2017). Numerical implementation of the loop-tree duality method. Eur. Phys. J. C, 77(5), 274–15pp.
Abstract: We present a first numerical implementation of the loop-tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs.
|
|