Athenodorou, A., Binosi, D., Boucaud, P., De Soto, F., Papavassiliou, J., Rodriguez-Quintero, J., et al. (2016). On the zero crossing of the three-gluon vertex. Phys. Lett. B, 761, 444–449.
Abstract: We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
|
Baron, R., Boucaud, P., Carbonell, J., Deuzeman, A., Drach, V., Farchioni, F., et al. (2010). Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks. J. High Energy Phys., 06(6), 111–31pp.
|
Baron, R., Boucaud, P., Dimopoulos, P., Frezzotti, R., Palao, D., Rossi, G., et al. (2010). Light meson physics from maximally twisted mass lattice QCD. J. High Energy Phys., 08(8), 097–41pp.
Abstract: We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N-f = 2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 less than or similar to m(PS) less than or similar to 650MeV we control the major systematic effects of our calculation. This enables us to confront our N-f = 2 data with SU(2) chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass.
|