Bach, E. et al, Bernabeu, J., Lacasta, C., Solaz, C., & Soldevila, U. (2024). Analysis of the quality assurance results from the initial part of production of the ATLAS18 ITK strip sensors. Nucl. Instrum. Methods Phys. Res. A, 1064, 169435–8pp.
Abstract: The production of strip sensors for the ATLAS Inner Tracker (ITk) started in 2021. Since then, a Quality Assurance (QA) program has been carried out continuously, by using specific test structures, in parallel to the Quality Control (QC) inspection of the sensors. The QA program consists of monitoring sensor-specific characteristics and the technological process variability, before and after the irradiation with gammas, neutrons, and protons. After two years, half of the full production volume has been reached and we present an analysis of the parameters measured as part of the QA process. The main devices used for QA purposes are miniature strip sensors, monitor diodes, and the ATLAS test chip, which contains several test structures. Such devices are tested by several sites across the collaboration depending on the type of samples (non-irradiated components or irradiated with protons, neutrons, or gammas). The parameters extracted from the tests are then uploaded to a database and analyzed by Python scripts. These parameters are mainly examined through histograms and timeevolution plots to obtain parameter distributions, production trends, and meaningful parameter-to-parameter correlations. The purpose of this analysis is to identify possible deviations in the fabrication or the sensor quality, changes in the behavior of the test equipment at different test sites, or possible variability in the irradiation processes. The conclusions extracted from the QA program have allowed test optimization, establishment of control limits for the parameters, and a better understanding of device properties and fabrication trends. In addition, any abnormal results prompt immediate feedback to a vendor.
|
Escrig, S. et al, Bernabeu, J., Lacasta, C., & Solaz, C. (2024). First test of energy response of the micro-vertex detection system for the WASA-FRS Experiments. Nucl. Instrum. Methods Phys. Res. A, 1064, 169392–4pp.
Abstract: The hypernuclei, which are nuclei that contain the quark s, have been studied for more than 50 years. Notwithstanding, the recent experiments using high-energy heavy-ion induced reactions have challenged their current understanding. The high multiplicity of particles generated in the reaction allows for the measurement of the interaction point of the primary beam with the target. Then, a micro-vertex detection system for the WASA-FRS Experiments has been developed. Several experimental tests have been performed with Sr-90 and Bi-207 beta sources and a 10-MeV proton beam at the CMAM tandem accelerator, and their results are reported.
|
Latonova, V. et al, Bernabeu, J., Lacasta, C., Solaz, C., & Soldevila, U. (2023). Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation. Nucl. Instrum. Methods Phys. Res. A, 1050, 168119–5pp.
Abstract: The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.
|
Helling, C. et al, Bernabeu, J., Lacasta, C., & Solaz, C. (2020). Strip sensor performance in prototype modules built for ATLAS ITk. Nucl. Instrum. Methods Phys. Res. A, 978, 164402–6pp.
Abstract: ATLAS experiment is preparing an upgrade of its detector for High-Luminosity LHC (HL-LHC) operation. The upgrade involves installation of the new all-silicon Inner Tracker (ITk). In the context of the ITk preparations, more than 80 strip modules were built with prototype barrel sensors. They were tested with electrical readout on a per-channel basis. In general, an excellent performance was observed, consistent with previous ASIC-level and sensor-level tests. However, the lessons learned included two phenomena important for the future phases of the project. First was the need to store and test the modules in a dry environment due to humidity sensitivity of the sensors. The second was an observation of high noise regions for 2 modules. The high noise regions were tested further in several ways, including monitoring the performance as a function of time and bias voltage. Additionally, direct sensor-level tests were performed on the affected channels. The inter-strip resistance and bias resistance tests showed low values, indicating a temporary loss of the inter-strip isolation. A subsequent recovery of the noise performance was observed. We present the test details, an analysis of how the inter-strip isolation affects the module noise, and the relationship with sensor-level quality control tests.
|
Bernabeu, J., Di Domenico, A., & Villanueva-Perez, P. (2013). Direct test of time reversal symmetry in the entangled neutral kaon system at a phi-factory. Nucl. Phys. B, 868(1), 102–119.
Abstract: We present a novel method to perform a direct T (time reversal) symmetry test in the neutral kaon system, independent of any CP and/or CPT symmetry tests. This is based on the comparison of suitable transition probabilities, where the required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolski-Rosen correlations of neutral kaon pairs produced at a phi-factory. In the time distribution between the two decays, we compare a reference transition like the one defined by the time-ordered decays (l(-), pi pi) with the T-conjugated one defined by (3 pi(0), l(+)). With the use of this and other T-conjugated comparisons, the KLOE-2 experiment at DA Phi NE could make a statistically significant test.
|
KLOE-2 Collaboration(Babusci, D. et al), & Bernabeu, J. (2023). Direct tests of T, CP, CPT symmetries in transitions of neutral K mesons with the KLOE experiment. Phys. Lett. B, 845, 138164–11pp.
Abstract: Tests of the T, CP and CPT symmetries in the neutral kaon system are performed by the direct comparison of the probabilities of a kaon transition process to its symmetry-conjugate. The exchange of in and out states required for a genuine test involving an antiunitary transformation implied by time-reversal is implemented exploiting the entanglement of K0K0 pairs produced at a 0 -factory.A data sample collected by the KLOE experiment at DAONE corresponding to an integrated luminosity of about 1.7 fb-1 is analysed to study the At distributions of the 0 -> KSKL -> pi+pi- pi +/- e -/+ v and 0 -> KSKL -> pi +/- e -/+ v3 pi 0 processes, with At the difference of the kaon decay times. A comparison of the measured At distributions in the asymptotic region At ⠅ iS allows to test for the first time T and CPT symmetries in kaon transitions with a precision of few percent, and to observe CP violation with this novel method.
|
Aguilar-Saavedra, J. A., & Bernabeu, J. (2010). W polarisation beyond helicity fractions in top quark decays. Nucl. Phys. B, 840(1-2), 349–378.
Abstract: We calculate the density matrix for the decay of a polarised top quark into a polarised W boson and a massive 17 quark, for the most general Wth vertex arising from dimension-six gauge-invariant effective operators. We show that, in addition to the well-known W helicity fractions, for polarised top decays it is worth defining and studying the transverse and normal W polarisation fractions, that is, the W polarisation alone two directions orthogonal to its momentum. In particular, a rather simple forward-backward asymmetry in the normal direction is found to be very sensitive to complex phases in one of the Wth anomalous couplings. This asymmetry, which indicates a normal W polarisation, can be generated for example by a P-odd. T-odd transition electric dipole moment. We also investigate the angular distribution of decay products in the top quark rest frame, calculating the spin analysing powers for a general Wth vertex. Finally we show that, using a combined fit to top decay observables and the t W cross section, at LHC it will be possible to obtain model-independent measurements of all the (complex) Wth couplings as well as the single top polarisation. Implications for spin correlations in top pair production are also discussed.
|
Benitez, V. et al, Bernabeu, J., Garcia, C., Lacasta, C., Marco, R., Rodriguez, D., et al. (2016). Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade. Nucl. Instrum. Methods Phys. Res. A, 833, 226–232.
Abstract: The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-In stereo angle. In order to investigate these specific problems, the “petalet” prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITIc strip, community acquiring the necessary expertise to develop the full End-cap structure, the petal.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., Mamuzic, J., Mitsou, V. A., Ruiz de Austri, R., et al. (2018). Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb(-1) of 13 TeV proton-proton collisions at the LHC. Phys. Lett. B, 782, 510–516.
Abstract: We update our previous search for trapped magnetic monopoles in LHC Run 2 using nearly six times more integrated luminosity and including additional models for the interpretation of the data. The MoEDAL forward trapping detector, comprising 222 kg of aluminium samples, was exposed to 2.11 fb(-1) of 13 TeV proton-proton collisions near the LHCb interaction point and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to the Dirac charge or above are excluded in all samples. The results are interpreted in Drell-Yan production models for monopoles with spins 0, 1/2 and 1: in addition to standard point-like couplings, we also consider couplings with momentum-dependent form factors. The search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
|
Bernabeu, J., Botella, F. J., & Nebot, M. (2014). Novel T-Violation observable open to any pair of decay channels at meson factories. Phys. Lett. B, 728, 95–98.
Abstract: Quantum entanglement between the two neutral mesons produced in meson factories has allowed the first indisputable direct observation of Time Reversal Violation in the time evolution of the neutral meson between the two decays. The exceptional meson transitions are directly connected to semileptonic and CP eigenstate decay channels. The possibility of extending the observable asymmetries to more decay channels confronts the problem of the “orthogonality condition”, which can be stated with this tonguetwister: Given a decay channel f, which is the decay channel f' such that the meson state not decaying to f is orthogonal to the meson state not decaying to f? In this Letter we propose an alternative T-Violation asymmetry at meson factories which allows its opening to any pair of decay channels. Instead of searching which is the pair of decay channels associated to the T-reverse meson transition, we build an asymmetry which tags the initial states of both the Reference and the T-reverse meson transitions. This observable filters the appropriate final states by means of two measurable survival probabilities. We discuss the methodology to be followed in the analysis of the new observable and the results expected in specific examples.
|