BABAR Collaboration(Lees, J. P. et al), Bernabeu, J., Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2012). Observation of Time-Reversal Violation in the B-0 Meson System. Phys. Rev. Lett., 109(21), 211801–8pp.
Abstract: Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B-0 or (B) over bar (0)), and J/psi K-L(0) or c (c) over barK(S)(0) final states (referred to as B+ or B-), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, (B) over bar (0) -> B- and B- -> (B) over bar (0), as a function of the time difference between the two B decays. Using 468 X 10(6) B (B) over bar pairs produced in Y(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding Delta S-T(+) = -137 +/- 0.14(stat) +/- 0.06(syst) and Delta S-T(-) = 1.17 +/- 0.18(stat) +/- 0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.
|
Amelino-Camelia, G. et al, Bernabeu, J., & Passemar, E. (2010). Physics with the KLOE-2 experiment at the upgraded DA Phi NE. Eur. Phys. J. C, 68(3-4), 619–681.
Abstract: Investigation at a f-factory can shed light on several debated issues in particle physics. We discuss: (i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, (ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled-kaon states, (iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta' mesons, (iv) the contribution to understand the nature of light scalar mesons, and (v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e(+)e(-) physics in the continuum with the measurements of (multi) hadronic cross sections and the study of gamma gamma processes.
|
Bernabeu, J., Di Domenico, A., & Villanueva-Perez, P. (2015). Probing CPT in transitions with entangled neutral kaons. J. High Energy Phys., 10(10), 139–19pp.
Abstract: In this paper we present a novel CPT symmetry test in the neutral kaon system based, for the first time, on the direct comparison of the probabilities of a transition and its CPT reverse. The required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a phi-factory. The observable quantities have been constructed by selecting the two semileptonic decays for flavour tag, the pi and 3 pi(0) decays for CP tag and the time orderings of the decay pairs. The interpretation in terms of the standard Weisskopf-Wigner approach to this system, directly connects CPT violation in these observables to the violating R delta parameter in the mass matrix of K-0 – (K) over bar (0), a genuine CPT violating effect independent of Delta Gamma and not requiring the decay as an essential ingredient. Possible spurious effects induced by CP violation in the decay and/or a violation of the Delta S = Delta Q rule have been shown to be well under control. The proposed test is thus fully robust, and might shed light on possible new CPT violating mechanisms, or further improve the precision of the present experimental limits. It could be implemented at the DA Phi NE facility in Frascati, where the KLOE-2 experiment might reach a statistical sensitivity of O (10(-3)) on the newly proposed observable quantities.
|
Kuehn, S. et al, Bernabeu, J., Lacasta, C., Marco-Hernandez, R., Santoyo, D., Solaz, C., et al. (2017). Prototyping of hybrids and modules for the forward silicon strip tracking detector for the ATLAS Phase-II upgrade. J. Instrum., 12, P05015–26pp.
Abstract: For the High-Luminosity upgrade of the Large Hadron Collider an increased instantaneous luminosity of up to 7.5 . 10(34) cm(-2) s(-1), leading to a total integrated luminosity of up to 3000 fb(-1), is foreseen. The current silicon and transition radiation tracking detectors of the ATLAS experiment will be unable to cope with the increased track densities and radiation levels, and will need to be replaced. The new tracking detector will consist entirely of silicon pixel and strip detectors. In this paper, results on the development and tests of prototype components for the new silicon strip detector in the forward regions (end-caps) of the ATLAS detector are presented. Flex-printed readout boards with fast readout chips, referred to as hybrids, and silicon detector modules are investigated. The modules consist of a hybrid glued onto a silicon strip sensor. The channels on both are connected via wire-bonds for readout and powering. Measurements of important performance parameters and a comparison of two possible readout schemes are presented. In addition, the assembly procedure is described and recommendations for further prototyping are derived.
|
Kuehn, S. et al, Bernabeu, J., Lacasta, C., Marco-Hernandez, R., Rodriguez Rodriguez, D., Santoyo, D., et al. (2018). Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment. J. Instrum., 13, T03004–22pp.
Abstract: In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., Mamuzic, J., Mitsou, V. A., Ruiz de Austri, R., et al. (2017). Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC. Phys. Rev. Lett., 118(6), 061801–6pp.
Abstract: MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., Mamuzic, J., Mitsou, V. A., Ruiz de Austri, R., et al. (2018). Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb(-1) of 13 TeV proton-proton collisions at the LHC. Phys. Lett. B, 782, 510–516.
Abstract: We update our previous search for trapped magnetic monopoles in LHC Run 2 using nearly six times more integrated luminosity and including additional models for the interpretation of the data. The MoEDAL forward trapping detector, comprising 222 kg of aluminium samples, was exposed to 2.11 fb(-1) of 13 TeV proton-proton collisions near the LHCb interaction point and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to the Dirac charge or above are excluded in all samples. The results are interpreted in Drell-Yan production models for monopoles with spins 0, 1/2 and 1: in addition to standard point-like couplings, we also consider couplings with momentum-dependent form factors. The search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., King, M., Mitsou, V. A., Vento, V., et al. (2016). Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC. J. High Energy Phys., 08(8), 067–25pp.
Abstract: The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area similar to 18 m(2), sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb(-1). No magnetic charge exceeding 0.5g(D) (where g(D) is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV <= m <= 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g(D) <= vertical bar g vertical bar <= 6g(D), and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g(D) <= vertical bar g vertical bar <= 4g(D). Under the assumption of Drell-Yan cross sections, mass limits are derived for vertical bar g vertical bar = 2g(D) and vertical bar g vertical bar = 3g(D) for the first time at the LHC, surpassing the results from previous collider experiments.
|
Benitez, V. et al, Bernabeu, J., Garcia, C., Lacasta, C., Marco, R., Rodriguez, D., et al. (2016). Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade. Nucl. Instrum. Methods Phys. Res. A, 833, 226–232.
Abstract: The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-In stereo angle. In order to investigate these specific problems, the “petalet” prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITIc strip, community acquiring the necessary expertise to develop the full End-cap structure, the petal.
|
Bernabeu, J., & Segarra, A. (2018). Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations. J. High Energy Phys., 11(11), 063–26pp.
Abstract: CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both m2| without any assumptions between m2 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a 0 to the T-invariant limit m20. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly -independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase , at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin . A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.
|