El-Neaj, Y. A. et al, & Bernabeu, J. (2020). AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum Technol., 7(1), 6–27pp.
Abstract: We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126
|
Segarra, A., & Bernabeu, J. (2020). Absolute neutrino mass and the Dirac/Majorana distinction from the weak interaction of aggregate matter. Phys. Rev. D, 101(9), 093004–6pp.
Abstract: The 2 nu-mediated force has a range of microns, well beyond the atomic scale. The effective potential is built from the t-channel absorptive part of the scattering amplitude and depends on neutrino properties on shell. We demonstrate that neutral aggregate matter has a weak charge and calculate the matrix of six coherent charges for its interaction with definite-mass neutrinos. Near the range of the potential the neutrino pair is nonrelativistic, leading to observable absolute mass and Dirac/Majorana distinction via different r-dependence and violation of the weak equivalence principle.
|
Muñoz, E., Barrientos, L., Bernabeu, J., Borja-Lloret, M., Llosa, G., Ros, A., et al. (2020). A spectral reconstruction algorithm for two-plane Compton cameras. Phys. Med. Biol., 65(2), 025011–17pp.
Abstract: One factor limiting the current applicability extent of hadron therapy is the lack of a reliable method for real time treatment monitoring. The use of Compton imaging systems as monitors requires the correct reconstruction of the distribution of prompt gamma productions during patient irradiation. In order to extract the maximum information from all the measurable events, we implemented a spectral reconstruction method that assigns to all events a probability of being either partial or total energy depositions. The method, implemented in a list-mode maximum likelihood expectation maximization algorithm, generates a four dimensional image in the joint spatial-spectral domain, in which the voxels containing the emission positions and energies are obtained. The analytical model used for the system response function is also employed to derive an analytical expression for the sensitivity, which is calculated via Monte Carlo integration. The performance of the method is evaluated through reconstruction of various experimental and simulated sources with different spatial and energy distributions. The results show that the proposed method can recover the spectral and spatial information simultaneously, but only under the assumption of ideal measurements. The analysis of the Monte Carlo simulations has led to the identification of two important degradation sources: the mispositioning of the gamma interaction point and the missing energy recorded in the interaction. Both factors are related to the high energy transferred to the recoil electrons, which can travel far from the interaction point and even escape the detector. These effects prevent the direct application of the current method in more realistic scenarios. Nevertheless, experimental point-like sources have been accurately reconstructed and the spatial distributions and spectral emission of complex simulated phantoms can be identified.
|
Bernabeu, J., & Navarro-Salas, J. (2019). A Non-Local Action for Electrodynamics: Duality Symmetry and the Aharonov-Bohm Effect, Revisited. Symmetry-Basel, 11(10), 1191–13pp.
Abstract: A non-local action functional for electrodynamics depending on the electric and magnetic fields, instead of potentials, has been proposed in the literature. In this work we elaborate and improve this proposal. We also use this formalism to confront the electric-magnetic duality symmetry of the electromagnetic field and the Aharonov-Bohm effect, two subtle aspects of electrodynamics that we examine in a novel way. We show how the former can be derived from the simple harmonic oscillator character of vacuum electrodynamics, while also demonstrating how the magnetic version of the latter naturally arises in an explicitly non-local manner.
|