Bernabeu, J. (2016). Discrete Symmetries CP,T,CPT. Acta Phys. Pol. B, 47(2), 417–424.
Abstract: The role of symmetry breaking mechanisms to search for new physics is of highest importance. We discuss the status and prospects of the discrete symmetries CP, T, CPT looking for their separate violation in LHC experiments and meson factories.
|
Bernabeu, J., & Martinez-Vidal, F. (2015). Time-Reversal Violation (Vol. 65). Annual Reviews.
Abstract: The violation of CP symmetry between matter and antimatter in the neutral K and B meson systems is well established, with a high degree of consistency between all available experimental measurements and with the Standard Model of particle physics. On the basis of the up-to-now-unbroken CPT symmetry, the violation of CP symmetry strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal T. Many searches for T violation have been performed and proposed using different observables and experimental approaches. These include T-odd observables, such as triple products in weak decays, and genuine observables, such as permanent electric dipole moments of nondegenerate stationary states and the breaking of the reciprocity relation. We discuss the conceptual basis of the required exchange of initial and final states with unstable particles, using quantum entanglement and the decay as a filtering measurement, for the case of neutral B and K mesons. Using this method, the BaBar experiment at SLAC has clearly observed T violation in B mesons.
|
Bernabeu, J., Sabulsky, D. O., Sanchez, F., & Segarra, A. (2024). Neutrino mass and nature through its mediation in atomic clock interference. AVS Quantum Sci., 6(1), 014410–8pp.
Abstract: The absolute mass of neutrinos and their nature are presently unknown. Aggregate matter has a coherent weak charge leading to a repulsive interaction mediated by a neutrino pair. The virtual neutrinos are non-relativistic at micron distances, giving a distinct behavior for Dirac versus Majorana mass terms. This effective potential allows for the disentanglement of the Dirac or Majorana nature of the neutrino via magnitude and distance dependence. We propose an experiment to search for this potential based on the concept that the density-dependent interaction of an atomic probe with a material source in one arm of an atomic clock interferometer generates a differential phase. The appropriate geometry of the device is selected using the saturation of the weak potential as a guide. The proposed experiment has the added benefit of being sensitive to gravity at micron distances. A strategy to suppress the competing Casimir-Polder interaction, depending on the electronic structure of the material source, as well as a way to compensate the gravitational interaction in the two arms of the interferometer is discussed.
|
El-Neaj, Y. A. et al, & Bernabeu, J. (2020). AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum Technol., 7(1), 6–27pp.
Abstract: We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126
|
Alonso, I. et al, & Bernabeu, J. (2022). Cold atoms in space: community workshop summary and proposed road-map. EPJ Quantum Technol., 9(1), 30–55pp.
Abstract: We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.
|
Amelino-Camelia, G. et al, Bernabeu, J., & Passemar, E. (2010). Physics with the KLOE-2 experiment at the upgraded DA Phi NE. Eur. Phys. J. C, 68(3-4), 619–681.
Abstract: Investigation at a f-factory can shed light on several debated issues in particle physics. We discuss: (i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, (ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled-kaon states, (iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta' mesons, (iv) the contribution to understand the nature of light scalar mesons, and (v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e(+)e(-) physics in the continuum with the measurements of (multi) hadronic cross sections and the study of gamma gamma processes.
|
Bevan, A. J. et al, Martinez-Vidal, F., Pich, A., Azzolini, V., Bernabeu, J., Lopez-March, N., et al. (2014). The Physics of the B Factories. Eur. Phys. J. C, 74(11), 3026–916pp.
|
Barenboim, G., Bernabeu, J., Mitsou, V. A., Romero Adam, E., & Vives, O. (2016). METing SUSY on the Z peak. Eur. Phys. J. C, 76(2), 57–13pp.
Abstract: Recently the ATLAS experiment announced a 3 sigma excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E-T(miss) > 225 GeV and H-T > 600 GeV, to be compared with 10.6 +/- 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m((g) over bar) less than or similar to 1.2 TeV, together with a heavy neutralino NLSP of m((chi) over bar) greater than or similar to 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features: light gluinos, or heavy particles with a strong production cross section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out.
|
Aguilar-Saavedra, J. A., Bernabeu, J., Mitsou, V. A., & Segarra, A. (2017). The Z boson spin observables as messengers of new physics. Eur. Phys. J. C, 77(4), 234–6pp.
Abstract: We demonstrate that the eight multipole parameters describing the spin state of the Z boson are able to disentangle known Z production mechanisms and signals from new physics at the LHC. They can be extracted from appropriate asymmetries in the angular distribution of lepton pairs from the Z boson decay. The power of this analysis is illustrated by (1) the production of Z boson plus jets; (2) Z boson plus missing transverse energy; (3) W and Z bosons originating from the two-body decay of a heavy resonance.
|
Bernabeu, J., Botella, F. J., Mavromatos, N. E., & Nebot, M. (2017). The signal of ill-defined CPT weakening entanglement in the B-d system. Eur. Phys. J. C, 77(12), 865–10pp.
Abstract: In the presence of quantum-gravity fluctuations (space-time foam), the CPT operator may be ill-defined. Its perturbative treatment leads to a modification of the Einstein-Podolsky- Rosen correlation of the neutral meson system by adding an entanglement-weakening term of the wrong exchange symmetry, the omega-effect. In the current paper we identify how to probe the complex omega in the entangled B-d system using the flavour (f)-CP(g) eigenstate decay channels: the connection between the intensities for the two timeordered decays (f, g) and (g, f) is lost. Appropriate observables are constructed allowing independent experimental determinations of Re(omega) and Im(omega), disentangled from CPT violation in the evolution Hamiltonian Re(theta) and Im(theta). 2 sigma tensions for both Re(theta) and Im(omega) are shown to be uncorrelated.
|