|
Mayoral, C., Recati, A., Fabbri, A., Parentani, R., Balbinot, R., & Carusotto, I. (2011). Acoustic white holes in flowing atomic Bose-Einstein condensates. New J. Phys., 13, 025007–29pp.
Abstract: We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method, which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.
|
|
|
Mauro, S., Balbinot, R., Fabbri, A., & Shapiro, I. L. (2015). Fourth derivative gravity in the auxiliary fields representation and application to the black-hole stability. Eur. Phys. J. Plus, 130(7), 135–8pp.
Abstract: We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in detail and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results clearer. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.
|
|
|
Fabbri, A., Balbinot, R., & Anderson, P. R. (2016). Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results. Phys. Rev. D, 93(6), 064046–6pp.
Abstract: A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low-frequency limit.
|
|
|
Fabbri, A., & Balbinot, R. (2021). Ramp-up of Hawking Radiation in Bose-Einstein-Condensate Analog Black Holes. Phys. Rev. Lett., 126(11), 111301–6pp.
Abstract: Inspired by a recent experiment by Steinhauer and co-workers, we present a simple model which describes the formation of an acoustic black hole in a Bose-Einstein condensate, allowing an analytical computation of the evolution in time of the corresponding density-density correlator. We show the emergence of analog Hawking radiation out of a “quantum atmosphere” region significantly displaced from the horizon. This is quantitatively studied both at T = 0 and even in the presence of an initial temperature T, as is always the case experimentally.
|
|
|
Dudley, R. A., Fabbri, A., Anderson, P. R., & Balbinot, R. (2020). Correlations between a Hawking particle and its partner in a 1+1D Bose-Einstein condensate analog black hole. Phys. Rev. D, 102(10), 105005–12pp.
Abstract: The Fourier transform of the density-density correlation function in a Bose-Einstein condensate (BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles and their partners. It can be expressed in terms of <(out)(a) over cap (ext)(up) (out)(a) over cap (int)(up)> where (out)(a) over cap (ext)(up) is the annihilation operator for the Hawking particle and (out)(a) over cap (int)(up) is the corresponding one for the partner. This basic quantity is calculated for three different models for the BEC flow. It is shown that in each model the inclusion of the effective potential in the mode equations makes a significant difference. Furthermore, particle production induced by this effective potential in the interior of the black hole is studied for each model and shown to be nonthermal. An interesting peak that is related to the particle production and is present in some models is discussed.
|
|
|
Dudley, R. A., Anderson, P. R., Balbinot, R., & Fabbri, A. (2018). Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model. Phys. Rev. D, 98(12), 124011–18pp.
Abstract: Transverse excitations in analogue black holes induce a masslike term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of approximately parallel peaks. For the most part the structure is completely different from that found in the massless case.
|
|
|
Coutant, A., Fabbri, A., Parentani, R., Balbinot, R., & Anderson, P. R. (2012). Hawking radiation of massive modes and undulations. Phys. Rev. D, 86(6), 064022–17pp.
Abstract: We compute the analogue Hawking radiation for modes which possess a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This reflection is accompanied by an extra mode mixing which occurs in the supersonic region, and which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what is found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodynamical regime.
|
|
|
Carusotto, I., Balbinot, R., Fabbri, A., & Recati, A. (2010). Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates. Eur. Phys. J. D, 56(3), 391–404.
Abstract: We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the emission of correlated pairs of Bogoliubov phonons by a time-dependent atom-atom scattering length. This effect can be considered as a condensed matter analog of the dynamical Casimir effect of quantum field theory. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical studies of analog Hawking radiation from acoustic black holes.
|
|
|
Balbinot, R., Fabbri, A., & Mayoral, C. (2013). Hawking effect in BECs acoustic white holes. Eur. Phys. J. Plus, 128(2), 16–21pp.
Abstract: Bogoliubov pseudoparticle creation in a BEC undergoing a WH-like flow is investigated analytically in the case of a one-dimensional geometry with stepwise homogeneous regions. Comparison of the results with those corresponding to a BH flow is performed. The implications for the analogous gravitational problem is discussed.
|
|
|
Balbinot, R., Fabbri, A., Dudley, R. A., & Anderson, P. R. (2019). Particle production in the interiors of acoustic black holes. Phys. Rev. D, 100(10), 105021–13pp.
Abstract: Phonon creation inside the horizons of acoustic black holes is investigated using two simple toy models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal. This nonthermality is due to the anomalous scattering that occurs in the interior regions.
|
|