DUNE Collaboration(Abud, A. A. et al), Amedo, P., Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., et al. (2023). Highly-parallelized simulation of a pixelated LArTPC on a GPU. J. Instrum., 18(4), P04034–35pp.
Abstract: The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. J. Instrum., 17(1), P01005–111pp.
Abstract: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Keywords: Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)
|
DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Garcia-Peris, M. A., et al. (2020). Long-baseline neutrino oscillation physics potential of the DUNE experiment. Eur. Phys. J. C, 80(10), 978–34pp.
Abstract: The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5 sigma, for all delta CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 sigma (5 sigma) after an exposure of 5 (10) years, for 50% of all delta CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22 theta 13 to current reactor experiments.
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network. Eur. Phys. J. C, 82(10), 903–19pp.
Abstract: Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Molina Bueno, L., & Novella, P. (2023). Measurements of neutrino oscillation parameters from the T2K experiment using 3.6 x 10^21 protons on target. Eur. Phys. J. C, 83(9), 782–50pp.
Abstract: The T2K experiment presents new measurements of neutrino oscillation parameters using 19.7(16.3) x 10(20) protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional 4.7 x 10(20) POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on sin(2) theta(13) and the impact of priors on the delta(CP) measurement. Both analyses prefer the normal mass ordering and upper octant of sin(2) theta(23) with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on sin(2) theta(13) from reactors, sin(2) theta(23) = 0.561(-0.032)(+0.021) using Feldman-Cousins corrected intervals, and Delta m(32)(2) = 2.494(-0.058)(+0.041) x 10(-3) eV(2) using constant Delta chi(2) intervals. The CP-violating phase is constrained to delta(CP) = -1.97(-0.70)(+0.97) using Feldman-Cousins corrected intervals, and delta(CP) = 0, pi is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than 2 sigma credible level using a flat prior in delta(CP), and just below 2 sigma using a flat prior in sin delta(CP). When the external constraint on sin(2) nu(13) is removed, sin(2) theta(13) = 28.0(-6.5)(+2.8) x 10(-3), in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC. Eur. Phys. J. C, 82(7), 618–29pp.
Abstract: DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.
|
DUNE Collaboration(Abud, A. A. et al), Amedo, P., Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., et al. (2023). Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora. Eur. Phys. J. C, 83(7), 618–25pp.
Abstract: The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 +/- 0.6% and 84.1 +/- 0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.
|
DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2021). Supernova neutrino burst detection with the Deep Underground Neutrino Experiment. Eur. Phys. J. C, 81(5), 423–26pp.
Abstract: The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2020). Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations. Nature, 580(7803), 339–344.
Abstract: The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model's charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.
|
DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2021). Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment DUNE Collaboration. Eur. Phys. J. C, 81(4), 322–51pp.
Abstract: The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
|