Xiao, C. W., Aceti, F., & Bayar, M. (2013). The small K pi component in the K* wave functions. Eur. Phys. J. A, 49(2), 22–5pp.
Abstract: We use a recently developed formalism which generalizes Weinberg's compositeness condition to partial waves higher than s-wave in order to determine the probability of having a K pi component in the K* wave function. A fit is made to the K pi phase shifts in p-wave, from where the coupling of K* to K pi and the K pi loop function are determined. These ingredients allow us to determine that the K* is a genuine state, different from a K pi component, in a proportion of about 80%.
|
Dias, J. M., Aceti, F., & Oset, E. (2015). Study of B<(B)over bar>* and B*<(B)over bar>* interactions in I=1 and relationship to the Z(b)(10610), Z(b)(10650) states. Phys. Rev. D, 91(7), 076001–14pp.
Abstract: We use the local hidden gauge approach in order to study the B (B) over bar* and B*(B) over bar* interactions for isospin I = 1. We show that both interactions via one light meson exchange are not allowed by the Okubo-ZweigIizuka rule and, for that reason, we calculate the contributions due to the exchange of two pions, interacting and noninteracting among themselves, and also due to the heavy vector mesons. Then, to compare all these contributions, we use the potential related to the heavy vector exchange as an effective potential corrected by a factor which takes into account the contribution of the other light meson exchanges. In order to look for poles, this effective potential is used as the kernel of the Bethe-Salpeter equation. As a result, for the B (B) over bar* interaction we find a loosely bound state with mass in the range 10587-10601 MeV, very close to the experimental value of the Z(b)(10610) reported by the Belle Collaboration. For the B*(B) over bar* case, we find a cusp at 10650 MeV for all spin J = 0, 1, 2 cases.
|
Debastiani, V. R., Aceti, F., Liang, W. H., & Oset, E. (2017). Revising the f(1)(1420) resonance. Phys. Rev. D, 95(3), 034015–10pp.
Abstract: We have studied the production and decay of the f(1) (1285) into pi a(0)(980) and K* (K) over bar as a function of the mass of the resonance and find a shoulder around 1400 MeV, tied to a triangle singularity, for the pi a(0)(980) mode, and a peak around 1420 MeV with about 60 MeV width for the K* (K) over bar mode. Both of these features agree with the experimental information on which the f(1)(1420) resonance is based. In addition, we find that if the f(1)(1420) is a genuine resonance, coupling mostly to K* (K) over bar as seen experimentally, one finds unavoidably about a 20% fraction for pi a(0)(980) decay of this resonance, in drastic contradiction with all experiments. Altogether, we conclude that the f(1)(1420) is not a genuine resonance, but the manifestation of the pi a(0)(980) and K* (K) over bar decay modes of the f(1)(1285) at higher energies than the nominal one.
|
Bayar, M., Aceti, F., Guo, F. K., & Oset, E. (2016). Discussion on triangle singularities in the Lambda(b) -> J/psi K(-)p reaction. Phys. Rev. D, 94(7), 074039–10pp.
Abstract: We have analyzed the singularities of a triangle loop integral in detail and derived a formula for an easy evaluation of the triangle singularity on the physical boundary. It is applied to the Lambda(b) -> J/psi K(-)p process via Lambda*-charmonium-proton intermediate states. Although the evaluation of absolute rates is not possible, we identify the chi(c1) and the psi(2S)as the relatively most relevant states among all possible charmonia up to the psi(2S). The Lambda(1890)chi(c1)p loop is very special, as its normal threshold and triangle singularities merge at about 4.45 GeV, generating a narrow and prominent peak in the amplitude in the case that the chi(c1)p is in an S wave. We also see that loops with the same charmonium and other Lambda* hyperons produce less dramatic peaks from the threshold singularity alone. For the case of chi(c1)p -> J/psi p and quantum numbers 3/2(-) or 5/2(+), one needs P and D waves, respectively, in the chi(c1)p, which drastically reduce the strength of the contribution and smooth the threshold peak. In this case, we conclude that the singularities cannot account for the observed narrow peak. In the case of 1/2(+), 3/2(-) quantum numbers, where chi(c1)p -> J/psi p can proceed in an S wave, the Lambda(1890)chi(c1)p triangle diagram could play an important role, though neither can assert their strength without further input from experiments and lattice QCD calculations.
|
Aceti, F., Xie, J. J., & Oset, E. (2015). The K(K)over-bar pi decay of the f(1) (1285) and its nature as a K*(K)over-bar – cc molecule. Phys. Lett. B, 750, 609–614.
Abstract: We investigate the decay of f(1) (1285) > pi K (K) over bar with the assumption that the f(1) (1285) is dynamically generated from the K*(K) over bar – cc interaction. In addition to the tree level diagrams that proceed via f(1)(1285) -> K*(K) over bar – cc -> pi K (K) over bar, we take into account also the final state interactions of K (K) over bar -> K (K) over bar and pi K -> pi K. The partial decay width and mass distributions of f(1) (1285) -> pi K (K) over bar are evaluated. We get a value for the partial decay width which, within errors, is in fair agreement with the experimental result. The contribution from the tree level diagrams is dominant, but the final state interactions have effects in the mass distributions. The predicted mass distributions are significantly different from phase space and tied to the K*(K) over bar – cc nature of the f(1) (1285) state.
|
Aceti, F., Oset, E., & Roca, L. (2014). Composite nature of the Lambda (1520) resonance. Phys. Rev. C, 90(2), 025208–8pp.
Abstract: Recently, the Weinberg compositeness condition of a bound state was generalized to account for resonant states and higher partial waves. We apply this extension to the case of the Lambda (1520) resonance and quantify the weight of the meson-baryon components in contrast to other possible genuine building blocks. This resonance was theoretically obtained from a coupled channels analysis using the s-wave pi Sigma* and K Xi* and the d-wave (K) over bar N and pi Sigma channels, applying the techniques of the chiral unitary approach. We obtain the result that this resonance is essentially dynamically generated from these meson-baryon channels, leaving room for only 15% weight of other kinds of components in its wave function.
|
Aceti, F., & Oset, E. (2012). Wave functions of composite hadron states and relationship to couplings of scattering amplitudes for general partial waves. Phys. Rev. D, 86(1), 014012–12pp.
Abstract: In this paper we present the connection between scattering amplitudes in momentum space and wave functions in coordinate space, generalizing previous work done for s-waves to any partial wave. The relationship to the wave function of the residues of the scattering amplitudes at the pole of bound states or resonances is investigated in detail. A sum rule obtained for the couplings provides a generalization to coupled channels, any partial wave and bound or resonance states, of Weinberg's compositeness condition, which was only valid for weakly bound states in one channel and s-wave. An example, requiring only experimental data, is shown for the rho meson indicating that it is not a composite particle of pi pi and K (K) over bar but something else.
|
Aceti, F., Molina, R., & Oset, E. (2012). X(3872) -> J/psi gamma decay in the D(D)over-bar* molecular picture. Phys. Rev. D, 86(11), 113007–13pp.
Abstract: From a picture of the X(3872) where the resonance is a bound state of D (D) over bar*- c.c., we evaluate the decay width into the J/psi gamma channel, which is sensitive to the internal structure of this state. For this purpose we evaluate the loops through which the X(3872) decays into its components, and the J/psi and the photon are radiated from these components. We use the local hidden gauge approach extrapolated to SU(4) with a particular SU(4) breaking. The radiative decay involves anomalous couplings, and we obtain acceptable values which are compared to experiments and results of other calculations. Simultaneously, we evaluate the decay rate for the X(3872) into J/psi omega and J/psi rho, and the results obtained for the ratio of these decay widths are compatible with the experiment. We also show that considering only the (D) over bar D-0*(0) – c.c. component in the radiative decay reduces the partial decay width in more than three orders of magnitude, in large discrepancy with experiment.
|
Aceti, F., Liang, W. H., Oset, E., Wu, J. J., & Zou, B. S. (2012). Isospin breaking and f(0)(980)-a(0)(980) mixing in the eta(1405) -> pi(0)f(0)(980) reaction. Phys. Rev. D, 86(11), 114007–11pp.
Abstract: We make a theoretical study of the eta(1405) -> pi(0)f(0)(980) and eta(1405) -> pi(0)a(0)(980) reactions with an aim to determine the isospin violation and the mixing of the f(0)(980) and a(0)(980) resonances. We make use of the chiral unitary approach where these two resonances appear as composite states of two mesons, dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the f(0)(980) production in agreement with a BES experiment. As to the amount of isospin violation, or f(0)(980) and a(0)(980) mixing, assuming constant vertices for the primary eta(1405) -> pi K-0 (K) over bar and eta(1405) -> pi(0)pi(0)eta production, we find results which are much smaller than found in the recent experimental BES paper, but consistent with results found in two other related BES experiments. We have tried to understand this anomaly by assuming an I = 1 mixture in the eta(1405) wave function, but this leads to a much bigger width of the f(0)(980) mass distribution than observed experimentally. The problem is solved by using the primary production driven by eta' -> K*(K) over bar followed by K* -> K pi, which induces an extra singularity in the loop functions needed to produce the f(0)(980) and a(0)(980) resonances. Improving upon earlier work along the same lines, and using the chiral unitary approach, we can now predict absolute values for the ratio Gamma(pi(0), pi(+)pi(-))/Gamma(pi(0), pi(0)eta) which are in fair agreement with experiment. We also show that the same results hold if we had the eta(1475) resonance or a mixture of these two states, as seems to be the case in the BES experiment.
|
Aceti, F., Dias, J. M., & Oset, E. (2015). f(1)(1285) decays into a(0)(980) pi(0), f(0)(980) pi(0) and isospin breaking. Eur. Phys. J. A, 51(4), 48–8pp.
Abstract: We evaluate the decay width for the processes f1(1285). p 0 a0(980) and f1(1285). p 0 f0(980) taking into account that all three resonances are dynamically generated from the meson- meson interaction, the f1(1285) from K* K – c. c. and the a0(980), f0(980) from p., K K and pp, K _ K, respectively. We use a triangular mechanism similar to that of.(1405). pp., which provides a decay width for f1(1285). p 0 a0(980) with a branching fraction of the order of 30%, in agreement with experiment. At the same time we evaluate the decay width for the isospin- forbidden f1(1285). p 0 f0(980), which appears when we consider different masses for the charged and neutral kaons, and show that it is much more suppressed than in the.(1405). pp. case, but gives rise to a narrow shape of the p + p- distribution similar to the one found in the eta(1405) -> pi pi eta decay.
|