Abdallah, J. et al, Carrio, F., Fiorini, L., Garcia Aparisi, F. B., Rodriguez Bosca, S., Valero, A., et al. (2021). Study of energy response and resolution of the ATLAS Tile Calorimeter to hadrons of energies from 16 to 30 GeV. Eur. Phys. J. C, 81(6), 549–18pp.
Abstract: Three spare modules of the ATLAS Tile Calorimeter were exposed to test beams from the Super Proton Synchrotron accelerator at CERN in 2017. The detector's measurements of the energy response and resolution to positive pions and kaons, and protons with energies ranging from 16 to 30 GeV are reported. The results have uncertainties of a few percent. They were compared to the predictions of the Geant4-based simulation program used in ATLAS to estimate the response of the detector to proton-proton events at the Large Hadron Collider. The determinations obtained using experimental and simulated data agree within the uncertainties.
|
ATLAS Tile Calorimeter Community(Abdallah, J. et al), Calderon, D., Castillo Gimenez, V., Costelo, J., Ferrer, A., Fullana, E., et al. (2013). Mechanical construction and installation of the ATLAS tile calorimeter. J. Instrum., 8, T11001–26pp.
Abstract: This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.
|
ATLAS Tile Calorimeter Community(Abdallah, J. et al), Castillo Gimenez, V., Costelo, J., Ferrer, A., Fullana, E., Gonzalez, V., et al. (2013). The optical instrumentation of the ATLAS Tile Calorimeter. J. Instrum., 8, P01005–21pp.
Abstract: The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.
|
ATLAS Tile Calorimeter System(Abdallah, J. et al), Ferrer, A., Fiorini, L., Hernandez Jimenez, Y., Higon-Rodriguez, E., Ruiz-Martinez, A., et al. (2016). The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1. J. Instrum., 11, T10005–29pp.
Abstract: This article describes the Laser calibration system of the ATLAS hadronic Tile Calorimeter that has been used during the run 1 of the LHC. First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.
|
DELPHI Collaboration(Abdallah, J. et al), Costa, M. J., Ferrer, A., Fuster, J., Garcia, C., Oyanguren, A., et al. (2014). Measurement of the electron structure function F-2(e) at LEP energies. Phys. Lett. B, 737, 39–47.
Abstract: The hadronic part of the electron structure function F-2(e) has been measured for the first time, using e(+)e(-) data collected by the DELPHI experiment at LEP, at centre-of-mass energies of root s = 91.2-209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F-2(e) data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F-2(gamma) analyses and help in refining existing parameterizations.
|
DELPHI Collaboration(Abdallah, J. et al), Costa, M. J., Ferrer, A., Fuster, J., Garcia, C., Oyanguren, A., et al. (2011). Search for single top quark production via contact interactions at LEP2. Eur. Phys. J. C, 71(2), 1555–13pp.
Abstract: Single top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb(-1). No evidence for a signal was found. Limits on the energy scale Lambda, were set for scalar-, vector- and tensor-like coupling scenarios.
|
DELPHI Collaboration(Abdallah, J. et al), Costa, M. J., Ferrer, A., Fuster, J., Garcia, C., Oyanguren, A., et al. (2011). A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole. Eur. Phys. J. C, 71(2), 1557–29pp.
Abstract: The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, E-B(weak). The average value of x(B)(weak) = E-B(weak)/E-beam is measured to be 0.699 +/- 0.011. The resulting x(B)(weak) distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA 6.156 from DELPHI data: a = 1.84(-0.21)(+0.23) and b = 0.642(-0.063)(+0.073) GeV-2, with a correlation factor rho = 92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x(B)(weak) is found to be 0.7092 +/- 0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a = 1.48(-0.10)(+0.11) and b = 0.509(-0.023)(+0.024) GeV-2, with a correlation factor rho = 92.6%.
|
DELPHI Collaboration(Abdallah, J. et al), Costa, M. J., Ferrer, A., Fuster, J., Garcia, C., Oyanguren, A., et al. (2010). Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z (0) decays. Eur. Phys. J. C, 67(3-4), 343–366.
Abstract: An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characteristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behavior to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet neutral multiplicity suggest that the rate is proportional to the number of quark pairs produced in the fragmentation process, with the neutral pairs being more effectively radiating than the charged ones.
|
DELPHI Collaboration(Abdallah, J. et al), Costa, M. J., Ferrer, A., Fuster, J., Garcia, C., Oyanguren, A., et al. (2010). Measurements of CP-conserving trilinear gauge boson couplings WWV (V gamma, Z) in e(+)e(-) collisions at LEP2. Eur. Phys. J. C, 66(1-2), 35–56.
Abstract: The data taken by DELPHI at centre-of-mass energies between 189 and 209 GeV are used to place limits on the CP-conserving trilinear gauge boson couplings Delta g(1)(Z), lambda(gamma) and Delta k(gamma) associated to W+W- and single W production at LEP2. Using data from the jjl nu, jjjj, jjX and lX final states, where j,l and X represent a jet, a lepton and missing four-momentum, respectively, the following limits are set on the couplings when one parameter is allowed to vary and the others are set to their Standard Model values of zero: Delta g(1)(Z) =-0.025-(+0.033)(0.030,), lambda(gamma) = 0.002(-0.035)(+0.035) and Delta k(gamma) = 0.024(-0.081)(+0.077). Results are also presented when two or three parameters are allowed to vary. All observations are consistent with the predictions of the Standard Model and supersede the previous results on these gauge coupling parameters published by DELPHI.
|