toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Araujo Filho, A.A.; Hassanabadi, H.; Reis, J.A.A.S.; Lisboa-Santos, L. url  doi
openurl 
  Title Thermodynamics of a quantum ring modified by Lorentz violation Type Journal Article
  Year 2023 Publication Physica Scripta Abbreviated Journal Phys. Scr.  
  Volume 98 Issue 6 Pages 065943 - 13pp  
  Keywords quantum ring; thermodynamic properties; Lorentz violation  
  Abstract In this work, we investigate the consequences of Lorentz-violating terms in the thermodynamic properties of a 1-dimensional quantum ring. In particular, we use the ensemble theory to obtain our results of interest. The thermodynamic functions as well as the spin currents are calculated as a function of the temperature. We observe that parameter xi, which triggers the Lorentz symmetry breaking, plays a major role in low temperature regime. Finally, depending on the configuration of the system, electrons can rotate in two different directions: clockwise and counterclockwise.  
  Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000989669300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5556  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A.; Nascimento, J.R.; Petrov, A.Y.; Porfírio, P.J. url  doi
openurl 
  Title Vacuum solution within a metric-affine bumblebee gravity Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 8 Pages 085010 - 13pp  
  Keywords  
  Abstract We consider a metric-affine extension to the gravitational sector of the Standard Model extension for the Lorentz-violating coefficients u and s(mu nu). The general results, which are applied to a specific model called metric-affine bumblebee gravity, are obtained. A Schwarzschild-like solution, incorporating effects of the Lorentz symmetry breaking through the coefficient X = xi b(2), is found. Furthermore, a complete study of the geodesic trajectories of particles is accomplished in this background, emphasizing the departure from general relativity. We also compute the advance of Mercury's perihelion and the deflection of light within the context of the weak-field approximation, and we verify that there exist two new contributions ascribed to the Lorentz symmetry breaking. As a phenomenological application, we compare our theoretical results with observational data in order to estimate the coefficient X.  
  Address [Araujo Filho, A. A.; Nascimento, J. R.; Petrov, A. Yu.; Porfirio, P. J.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151350300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5932  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A.; Reis, J.A.A.S.; Ghosh, S. url  doi
openurl 
  Title Quantum gases on a torus Type Journal Article
  Year 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 20 Issue 10 Pages 2350178 - 19pp  
  Keywords Thermodynamic properties; non-Cartesian geometries; grand canonical ensemble; noninteracting and interacting quantum gases; spinless; bosons and fermion particles  
  Abstract This paper is aimed at studying the thermodynamic properties of quantum gases confined to a torus. To do that, we consider noninteracting gases within the grand canonical ensemble formalism. In this context, fermions and bosons are taken into account and the calculations are properly provided in both analytical and numerical manners. In particular, the system turns out to be sensitive to the topological parameter under consideration: the winding number. Furthermore, we also derive a model in order to take into account interacting quantum gases. To corroborate our results, we implement such a method for two different scenarios: a ring and a torus.  
  Address [Araujo Filho, A. A.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988814200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5553  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A.; Zare, S.; Porffrio, P.J.; Kriz, J.; Hassanabadi, H. url  doi
openurl 
  Title Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 838 Issue Pages 137744 - 9pp  
  Keywords Thermodynamic properties; Black hole; Non-commutative gauge theory; Evaporation process  
  Abstract In this work, we study the thermodynamic properties on a non-commutative background via gravitational gauge field potentials. This procedure is accomplished after contracting de Sitter (dS) group, SO(4, 1), with the Poincare group, ISO(3, 1). Particularly, we focus on a static spherically symmetric black hole. In this manner, we calculate the modified Hawking temperature and the other deformed thermal state quantities, namely, entropy, heat capacity, Helmholtz free energy and pressure. Finally, we also investigate the black hole evaporation process in such a context.  
  Address [Araujo Filho, A. A.] Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000935398000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5483  
Permanent link to this record
 

 
Author (up) Araujo, M.C.; Furtado, J.; Maluf, R.V. url  doi
openurl 
  Title Lorentz-violating extension of scalar QED at finite temperature Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 844 Issue Pages 138064 - 6pp  
  Keywords  
  Abstract In this work, we calculate the one-loop self-energy corrections to the gauge field in scalar electrodynamics modified by Lorentz-violating terms within the framework of the standard model extension (SME). We focus on both CP T-even and CP T-odd contributions. The kinetic part of the scalar sector contains a CP T-even symmetric Lorentz-breaking tensor, and the interaction terms include a vector contracted with the usual covariant derivative in a gauge-invariant manner. We computed the one-loop radiative corrections using dimensional regularization for both the CP T-even and CP T-odd cases. Additionally, we employed the Matsubara formalism to account for finite temperature effects.  
  Address [Araujo, M. C.; Maluf, R. V.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: michelangelo@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001048178600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5617  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva