toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ahlburg, P. et al; Marinas, C. url  doi
openurl 
  Title EUDAQ – a data acquisition software framework for common beam telescopes Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 1 Pages P01038 - 30pp  
  Keywords Data acquisition concepts; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases); Particle tracking detectors; Calorimeters  
  Abstract EUDAQ is a generic data acquisition software developed for use in conjunction with common beam telescopes at charged particle beam lines. Providing high-precision reference tracks for performance studies of new sensors, beam telescopes are essential for the research and development towards future detectors for high-energy physics. As beam time is a highly limited resource, EUDAQ has been designed with reliability and ease-of-use in mind. It enables flexible integration of different independent devices under test via their specific data acquisition systems into a top-level framework. EUDAQ controls all components globally, handles the data flow centrally and synchronises and records the data streams. Over the past decade, EUDAQ has been deployed as part of a wide range of successful test beam campaigns and detector development applications.  
  Address [Arling, J. -H.; Dreyling-Eschweiler, J.; Eichhorn, T.; Gregor, I. -M.; Irles, A.; Jansen, H.; Keller, J. S.; Kulis, S.; Lange, J.; Luetticke, F.; Perrey, H.; Peschke, R.; Pitzl, D.; Rossi, E.; Rubinsky, I.; Stanitzki, M.] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: jan.dreyling-eschweiler@desy.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000525449600038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4649  
Permanent link to this record
 

 
Author (up) Alcaide, J.; Mileo, N.I. url  doi
openurl 
  Title LHC sensitivity to singly charged scalars decaying into electrons and muons Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 7 Pages 075030 - 11pp  
  Keywords  
  Abstract Current LHC searches for nonsupersymmetric singly charged scalars, based on two-Higgs-doublet models, in general, focus the analysis in third-generation fermions in the final state. However, singly charged scalars in alternative extensions of the scalar sector involve Yukawa couplings not proportional to the mass of the fermions. Assuming the scalar decays into electrons and muons, it can manifest cleaner experimental signatures. In this paper, we suggest that a singly charged scalar singlet, with electroweak production, can start to be probed in the near future with dedicated search strategies. Depending on the strength of the Yukawa couplings, two independent scenarios arc considered: direct pair production (small couplings) and single production via a virtual neutrino exchange (large couplings). We show that, up to a mass as large as 500 GeV, most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC. Our results also apply to other frameworks, provided the singly charged scalar exhibits similar production patterns and dominant decay modes.  
  Address [Alcaide, Julien] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: julien.alcaide@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000582241100010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4580  
Permanent link to this record
 

 
Author (up) Alimena, J. et al; Hirsch, M.; Mamuzic, J.; Mitsou, V.A.; Santra, A. url  doi
openurl 
  Title Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 9 Pages 090501 - 226pp  
  Keywords beyond the Standard Model; long-lived particles; Large Hadron Collider; high-luminosity LHC; collider phenomenology; high-energy collider experiments  
  Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.  
  Address [Alimena, Juliette; Hill, Christopher S.] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA, Email: juliette.alimena@cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570614200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4535  
Permanent link to this record
 

 
Author (up) Alves, J.M.; Botella, F.J.; Branco, G.C.; Nebot, M. url  doi
openurl 
  Title Extending trinity to the scalar sector through discrete flavoured symmetries Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 8 Pages 710 - 14pp  
  Keywords  
  Abstract We conjecture the existence of a relation between elementary scalars and fermions, making it plausible the existence of three Higgs doublets. We introduce a Trinity Principle (TP) which, given the fact that there are no massless quarks, requires the existence of a minimum of three Higgs doublets. The TP states that each row of the mass matrix of a quark of a given charge should receive the contribution from one and only one scalar doublet and furthermore a given scalar doublet should contribute to one and only one row of the mass matrix of a quark of a given charge. This principle is analogous to the Natural Flavour Conservation (NFC) of Glashow and Weinberg with the key distinction that NFC required the introduction of a flavour blind symmetry, while the TP requires a flavoured symmetry, to be implemented in a natural way. We provide two examples which satisfy the Trinity Principle based on Z(3) and Z(2) x Z(2)' flavoured symmetries, and show that they are the minimal multi-Higgs extensions of the Standard Model where CP can be imposed as a symmetry of the full Lagrangian and broken by the vacuum, without requiring soft-breaking terms. We show that the vacuum phases are sufficient to generate a complex CKM matrix, in agreement with experiment. The above mentioned flavoured symmetries lead to a strong reduction in the number of parameters in the Yukawa interactions, enabling a control of the Scalar Flavour Changing Neutral Couplings (SFCNC). We analyse some of the other physical implications of the two models, including an estimate of the enhancement of the Baryon Asymmetry of the Universe provided by the new sources of CP violation, and a discussion of the strength of their tree-level SFCNC.  
  Address [Alves, Joao M.; Branco, Gustavo C.; Nebot, Miguel] Univ Lisboa UL, Inst Super Tecn IST, Dept Fis, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: j.magalhaes.alves@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561119300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4503  
Permanent link to this record
 

 
Author (up) Anderson, P.R.; Siahmazgi, S.G.; Clark, R.D.; Fabbri, A. url  doi
openurl 
  Title Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 12 Pages 125035 - 26pp  
  Keywords  
  Abstract A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case where the results are known.  
  Address [Anderson, Paul R.; Siahmazgi, Shohreh Gholizadeh; Clark, Raymond D.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language Spanish Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000604246500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4673  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva