toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) ANTARES Neutrino Search for Time and Space Correlations with IceCube High-energy Neutrino Events Type Journal Article
  Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 879 Issue 2 Pages 108 - 8pp  
  Keywords astroparticle physics; neutrinos  
  Abstract In past years the IceCube Collaboration has reported the observation of astrophysical high-energy neutrino events in several analyses. Despite compelling evidence for the first identification of a neutrino source, TXS 0506+056, the origin of the majority of these events is still unknown. In this paper, we search for a possible transient origin of the IceCube astrophysical events using neutrino events detected by the ANTARES telescope. The arrival time and direction of 6894 track-like and 160 shower-like events detected over 2346 days of livetime are examined to search for coincidences with 54 IceCube high-energy track-like neutrino events, by means of a maximum likelihood method. No significant correlation is observed and upper limits on the one-flavor neutrino fluence from the direction of the IceCube candidates are derived. The nonobservation of time and space correlation within the time window of 0.1 days with the two most energetic IceCube events constrains the spectral index of a possible point-like transient neutrino source to be harder than -2.3 and -2.4 for each event, respectively.  
  Address [Albert, A.; Drouhin, D.; Gracia Ruiz, R.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: giulia.illuminati@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000475388900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4096  
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Camargo, D.A.; Queiroz, F.S.; Valle, J.W.F. url  doi
openurl 
  Title (up) Asymmetric dark matter, inflation, and leptogenesis from B-L symmetry breaking Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 5 Pages 055040 - 17pp  
  Keywords  
  Abstract We propose a unified setup for dark matter, inflation, and baryon asymmetry generation through the neutrino mass seesaw mechanism. Our scenario emerges naturally from an extended gauge group containing B-L as a noncommutative symmetry, broken by a singlet scalar that also drives inflation. Its decays reheat the universe, producing the lightest right-handed neutrino. Automatic matter parity conservation leads to the stability of an asymmetric dark matter candidate, directly linked to the matter-antimatter asymmetry in the Universe.  
  Address [Phung Van Dong] Phenikaa Univ, Phenikaa Inst Adv Study, Hanoi 100000, Vietnam, Email: dong.phungvan@phenikaa-uni.edu.vn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462913900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3969  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title (up) ATLAS b-jet identification performance and efficiency measurement with t(t)over-bar events in pp collisions at root s=13 TeV Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 11 Pages 970 - 36pp  
  Keywords  
  Abstract The algorithms used by the ATLAS Collaboration during Run 2 of the Large Hadron Collider to identify jets containing b-hadrons are presented. The performance of the algorithms is evaluated in the simulation and the efficiency with which these algorithms identify jets containing b-hadrons is measured in collision data. The measurement uses a likelihood-based method in a sample highly enriched in t (t) over bar events. The topology of the t -> Wb decays is exploited to simultaneously measure both the jet flavour composition of the sample and the efficiency in a transverse momentum range from 20 to 600 GeV. The efficiency measurement is subsequently compared with that predicted by the simulation. The data used in this measurement, corresponding to a total integrated luminosity of 80.5 fb(-1), were collected in proton-proton collisions during the years 2015-2017 at a centre-of-mass energy root s = 13 TeV. By simultaneously extracting both the efficiency and jet flavour composition, this measurement significantly improves the precision compared to previous results, with uncertainties ranging from 1 to 8% depending on the jet transverse momentum.  
  Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000505550300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4251  
Permanent link to this record
 

 
Author Elor, G.; Escudero, M.; Nelson, A.E. url  doi
openurl 
  Title (up) Baryogenesis and dark matter from B mesons Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 3 Pages 035031 - 18pp  
  Keywords  
  Abstract We present a new mechanism of baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral B meson oscillations and subsequent decays. This setup is testable at hadron colliders and B factories. In the early universe, decays of a long lived particle produce B mesons and antimesons out of thermal equilibrium. These mesons/antimesons then undergo CP violating oscillations before quickly decaying into visible and dark sector particles. Dark matter will be charged under the baryon number so that the visible sector baryon asymmetry is produced without violating the total baryon number of the Universe. The produced baryon asymmetry will be directly related to the leptonic charge asymmetry in neutral B decays: an experimental observable. Dark matter is stabilized by an unbroken discrete symmetry, and proton decay is simply evaded by kinematics. We will illustrate this mechanism with a model that is unconstrained by dinucleon decay, does not require a high reheat temperature, and would have unique experimental signals-a positive leptonic asymmetry in B meson decays, a new decay of B mesons into a baryon and missing energy, and a new decay of b-flavored baryons into mesons and missing energy. These three observables are testable at current and upcoming collider experiments, allowing for a distinct probe of this mechanism.  
  Address [Elor, Gilly; Nelson, Ann E.] Univ Washington, Dept Phys, Box 1560, Seattle, WA 98195 USA, Email: gelor@uw.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459208700015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3916  
Permanent link to this record
 

 
Author Dombos, A.C.; Spyrou, A.; Naqvi, F.; Quinn, S.J.; Liddick, S.N.; Algora, A.; Baumann, T.; Brett, J.; Crider, B.P.; DeYoung, P.A.; Ginter, T.; Gombas, J.; Kwan, E.; Lyons, S.; Ong, W.J.; Palmisano, A.; Pereira, J.; Prokop, C.J.; Scriven, D.P.; Simon, A.; Smith, M.K.; Sumithrarachchi, C.S. doi  openurl
  Title (up) beta-decay half-lives of neutron-rich nuclides in the A=100-110 mass region Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 99 Issue 1 Pages 015802 - 8pp  
  Keywords  
  Abstract beta-decay half-lives of neutron-rich nuclides in the A = 100-110 mass region have been measured using an implantation station installed inside of the Summing NaI(T1) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement.  
  Address [Dombos, A. C.; Spyrou, A.; Naqvi, F.; Quinn, S. J.; Liddick, S. N.; Baumann, T.; Crider, B. P.; Ginter, T.; Kwan, E.; Lyons, S.; Ong, W. -J.; Palmisano, A.; Pereira, J.; Prokop, C. J.; Smith, M. K.; Sumithrarachchi, C. S.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA, Email: dombos@nscl.msu.edu  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455685700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3876  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva