toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reig, M. url  doi
openurl 
  Title On the high-scale instanton interference effect: axion models without domain wall problem Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 167 - 13pp  
  Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Gauge Symmetry  
  Abstract We show that a new chiral, confining interaction can be used to break Peccei-Quinn symmetry dynamically and solve the domain wall problem, simultaneously. The resulting theory is an invisible QCD axion model without domain walls. No dangerous heavy relics appear.  
  Address [Reig, Mario] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: mario.reig@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483916900002 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4137  
Permanent link to this record
 

 
Author Ortiz Arciniega, J.L.; Carrio, F.; Valero, A. url  doi
openurl 
  Title FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions Type Journal Article
  Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P09002 - 13pp  
  Keywords Data processing methods; Pattern recognition; cluster finding; calibration and fitting methods; Simulation methods and programs  
  Abstract The analog signals generated in the read-out electronics of particle detectors are shaped prior to the digitization in order to improve the signal to noise ratio (SNR). The real amplitude of the analog signal is then obtained using digital filters, which provides information about the energy deposited in the detector. The classical digital filters have a good performance in ideal situations with Gaussian electronic noise and no pulse shape distortion. However, high-energy particle colliders, such as the Large Hadron Collider (LHC) at CERN, can produce multiple simultaneous events, which produce signal pileup. The performance of classical digital filters deteriorates in these conditions since the signal pulse shape gets distorted. In addition, this type of experiments produces a high rate of collisions, which requires high throughput data acquisitions systems. In order to cope with these harsh requirements, new read-out electronics systems are based on high-performance FPGAs, which permit the utilization of more advanced real-time signal reconstruction algorithms. In this paper, a deep learning method is proposed for real-time signal reconstruction in high pileup particle detectors. The performance of the new method has been studied using simulated data and the results are compared with a classical FIR filter method. In particular, the signals and FIR filter used in the ATLAS Tile Calorimeter are used as benchmark. The implementation, resources usage and performance of the proposed Neural Network algorithm in FPGA are also presented.  
  Address [Ortiz Arciniega, J. L.] Univ Valencia, Avinguda Univ S-N, Burjassot, Spain, Email: orarjo@alumni.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486990000002 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4150  
Permanent link to this record
 

 
Author Caputo, A.; Reig, M. url  doi
openurl 
  Title Cosmic implications of a low-scale solution to the axion domain wall problem Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 6 Pages 063530 - 10pp  
  Keywords  
  Abstract The post-inflationary breaking of Peccei-Quinn (PQ) symmetry can lead to the cosmic domain wall catastrophe. In this paper we show how to avoid domain walls by implementing the instanton interference effect with a new interaction which itself breaks PQ symmetry and confines at an energy scale smaller than Lambda(QCD). We give a general description of the mechanism and consider its cosmological implications and constraints within a minimal model. Contrary to other mechanisms, we do not require an inverse phase transition or fine-tuned bias terms. Incidentally, the mechanism leads to the introduction of new self-interacting dark matter candidates and the possibility of producing gravitational waves in the frequency range of SKA. Unless a fine-tuned hidden sector is introduced, the mechanism predicts a QCD axion in the mass range 1-15 meV.  
  Address [Caputo, Andrea; Reig, Mario] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487735200009 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4152  
Permanent link to this record
 

 
Author Coloma, P. url  doi
openurl 
  Title Icecube/DeepCore tests for novel explanations of the MiniBooNE anomaly Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 9 Pages 748 - 7pp  
  Keywords  
  Abstract While the low-energy excess observed at MiniBooNE remains unchallenged, it has become increasingly difficult to reconcile it with the results from other sterile neutrino searches and cosmology. Recently, it has been shown that non-minimal models with new particles in a hidden sector could provide a better fit to the data. As their main ingredients they require a GeV-scale kinetically mixed with the photon, and an unstable heavy neutrino with a mass in the 150 MeV range that mixes with the light neutrinos. In this letter we point out that atmospheric neutrino experiments (and, in particular, IceCube/DeepCore) could probe a significant fraction of the parameter space of such models by looking for an excess of “double-bang” events at low energies, as proposed in our previous work (Coloma et al., Phys Rev Lett 119(20):201804, 10.1103/PhysRevLett.119.20180, 2017). Such a search would probe exactly the same production and decay mechanisms required to explain the anomaly.  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: pilar.coloma@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487367200001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4153  
Permanent link to this record
 

 
Author de Azcarraga, J.A.; Gutiez, D.; Izquierdo, J.M. url  doi
openurl 
  Title Extended D=3 Bargmann supergravity from a Lie algebra expansion Type Journal Article
  Year 2019 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 946 Issue Pages 114706 - 14pp  
  Keywords  
  Abstract In this paper we show how the method of Lie algebra expansions may be used to obtain, in a simple way, both the extended Bargmann Lie superalgebra and the Chern-Simons action associated to it in three dimensions, starting from D = 3, N = 2 superPoincare and its corresponding Chern-Simons supergravity. (C) 2019 The Author(s). Published by Elsevier B.V.  
  Address [de Azcarraga, J. A.] CSIC UVEG, Dept Fis Teor, Valencia 46100, Spain, Email: azcarrag@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487935600012 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4156  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva