toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title New scalar compact objects in Ricci-based gravity theories Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 044 - 20pp  
  Keywords modified gravity; gravity; GR black holes; Wormholes  
  Abstract Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers.  
  Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000507261900041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4252  
Permanent link to this record
 

 
Author (up) Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Correspondence between modified gravity and general relativity with scalar fields Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 4 Pages 044040 - 15pp  
  Keywords  
  Abstract We describe a novel procedure to map the field equations of nonlinear Ricci-based metric-affine theories of gravity, coupled to scalar matter described by a given Lagrangian, into the field equations of general relativity coupled to a different scalar field Lagrangian. Our analysis considers examples with a single and N real scalar fields, described either by canonical Lagrangians or by generalized functions of the kinetic and potential terms. In particular, we consider several explicit examples involving foRthorn theories and the Eddington-inspired Born-Infeld gravity model, coupled to different scalar field Lagrangians. We show how the nonlinearities of the gravitational sector of these theories can be traded to nonlinearities in the matter fields and how the procedure allows to find new solutions on both sides of the correspondence. The potential of this procedure for applications of scalar field models in astrophysical and cosmological scenarios is highlighted.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.cdu.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459210600012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3914  
Permanent link to this record
 

 
Author (up) AGATA Collaboration (Goldkuhle, A. et al); Perez-Vidal, R.M.; Domingo-Pardo, C.; Gadea, A. doi  openurl
  Title Lifetime measurements in Ti-52,Ti-54 to study shell evolution toward N=32 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 5 Pages 054317 - 12pp  
  Keywords  
  Abstract Lifetimes of the excited states in the neutron-rich Ti-52,Ti-54 nuclei, produced in a multinucleon-transfer reaction, were measured by employing the Cologne plunger device and the recoil-distance Doppler-shift method. The experiment was performed at the Grand Accelerateur National d'Ions Lourds facility by using the Advanced Gamma Tracking Array for the gamma-ray detection, coupled to the large-acceptance variable mode spectrometer for an event-by-event particle identification. A comparison between the transition probabilities obtained from the measured lifetimes of the 2(1)(+) to 8(1)(+) yrast states in Ti-52,Ti-54 and that from the shell-model calculations based on the well-established GXPF1A, GXPF1B, and KB3G fp shell interactions support the N = 32 subshell closure. The B(E2) values for Ti-52 determined in this work are in disagreement with the known data, but are consistent with the predictions of the shell-model calculations and reduce the previously observed pronounced staggering across the even-even titanium isotopes.  
  Address [Goldkuhle, A.; Fransen, C.; Blazhev, A.; Beckers, M.; Birkenbach, B.; Braunroth, T.; Dewald, A.; Eberth, J.; Hess, H.; Jolie, J.; Litzinger, J.; Mueller-Gatermann, C.; Reiter, P.; Vogt, A.; Warr, N.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: agoldkuhle@ikp.uni-koeln.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000496925500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4201  
Permanent link to this record
 

 
Author (up) AGATA Collaboration (Kaya, L. et al); Gadea, A. doi  openurl
  Title Identification of high-spin proton configurations in Ba-136 and Ba-137 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 99 Issue 1 Pages 014301 - 19pp  
  Keywords  
  Abstract The high-spin structures of Ba-136 and Ba-137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Ba-136 is populated in a Xe-136 + U-238 MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two Be-9 + Te-130 fusion-evaporation reactions using the High-efficiency Observatory for gamma-Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are populated in an elusive reaction channel in the B-11 + Te-130 fusion-evaporation reaction utilizing the HORUS gamma-ray array. The level scheme above the J(pi) = 10(+) isomer in Ba-136 is revised and extended up to an excitation energy of approximately 5.5 MeV. From the results of angular-correlation measurements, the E-x = 3707- and E-x = 4920-keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both Te-132 and Xe-134 are characterized by high-energy 12(+) -> 10(+) transitions, the Ba-136 E2 ground-state band is interrupted by negative-parity states only a few hundred keV above the J(pi) = 10(+) isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in Ba-137. The new results close a gap along the high-spin structure of N < 82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130, and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly of proton character.  
  Address [Kaya, L.; Vogt, A.; Reiter, P.; Mueller-Gatermann, C.; Blazhev, A.; Arnswald, K.; Birkenbach, B.; Droste, M.; Eberth, J.; Fransen, C.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Lewandowski, L.; Rosiak, D.; Saed-Samii, N.; Seidlitz, M.; Weinert, M.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454768000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3859  
Permanent link to this record
 

 
Author (up) AGATA Collaboration (Kaya, L. et al); Gadea, A. doi  openurl
  Title Isomer spectroscopy in Ba-133 and high-spin structure of Ba-134 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 2 Pages 024323 - 18pp  
  Keywords  
  Abstract The transitional nuclei Ba-134 and Ba-133 are investigated after multinucleon transfer employing the high-resolution Advanced GAmma Tracking Array coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and after fusion-evaporation reaction at the FN tandem accelerator of the University of Cologne, Germany. The J(pi) = 19/2(+) state at 1942 keV in Ba-133 is identified as an isomer with a half-life of 66.6(20) ns corresponding to a B(E1) value of 7.7(4) x 10(-6) e(2) fm(2) for the J(pi) = 19/2(+) to J(pi) = 19/2(-) transition. The level scheme of Ba-134 above the J(pi) = 10(+) isomer is extended to approximately 6 MeV. A pronounced backbending is observed at h omega = 0.38 MeV along the positive-parity yrast band. The results are compared to the high-spin systematics of the Z = 56 isotopes. Large-scale shell-model calculations employing the GCN50:82, SN100PN, SNV, PQM130, Realistic SM, and EPQQM interactions reproduce the experimental findings and elucidate the structure of the high-spin states. The shell-model calculations employing the GCN50:82 and PQM130 interactions reproduce alignment properties and provide detailed insight into the microscopic origin of this phenomenon in transitional Ba-134.  
  Address [Kaya, L.; Vogt, A.; Reiter, P.; Arnswald, K.; Birkenbach, B.; Blazhev, A.; Droste, M.; Eberth, J.; Esmaylzadeh, A.; Fransen, C.; Hess, H.; Hirsch, R.; Jolie, J.; Karayonchev, V; Kornwebel, L.; Lewandowski, L.; Mueller-Gatermann, C.; Regis, J-M; Saed-Samii, N.; Schomacker, K.; Seidlitz, M.; Siebeck, B.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000480688200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4106  
Permanent link to this record
 

 
Author (up) Aguilar, A.C. et al; Papavassiliou, J. url  doi
openurl 
  Title Pion and kaon structure at the electron-ion collider Type Journal Article
  Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 55 Issue 10 Pages 190 - 15pp  
  Keywords  
  Abstract Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Model's NG modes, whose surprisingly low mass is critical to the evolution of our Universe.  
  Address [Aguilar, Arlene C.] Univ Campinas UNICAMP, Inst Phys Gled Wataghin, BR-13083859 Campinas, SP, Brazil, Email: ent@jlab.org;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000499964100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4212  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative structure of the ghost-gluon kernel Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 3 Pages 034026 - 26pp  
  Keywords  
  Abstract The ghost-gluon scattering kernel is a special correlation function that is intimately connected with two fundamental vertices of the gauge sector of QCD: the ghost-gluon vertex, which may be obtained from it through suitable contraction, and the three-gluon vertex, whose Slavnov-Taylor identity contains that kernel as one of its main ingredients. In this work we present a detailed nonperturbative study of the five form factors comprising it, using as the starting point the “one-loop dressed” approximation of the dynamical equations governing their evolution. The analysis is carried out for arbitrary Euclidean momenta and makes extensive use of the gluon propagator and the ghost dressing function, whose infrared behavior has been firmly established from a multitude of continuum studies and large-volume lattice simulations. In addition, special Ansatze are employed for the vertices entering in the relevant equations, and their impact on the results is scrutinized in detail. Quite interestingly, the veracity of the approximations employed may be quantitatively tested by appealing to an exact relation, which fixes the value of a special combination of the form factors under construction. The results obtained furnish the two form factors of the ghostgluon vertex for arbitrary momenta and, more importantly, pave the way toward the nonperturbative generalization of the Ball-Chiu construction for the longitudinal part of the three-gluon vertex.  
  Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459909200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3928  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative Ball-Chiu construction of the three-gluon vertex Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 9 Pages 094010 - 30pp  
  Keywords  
  Abstract We present the detailed derivation of the longitudinal part of the three-gluon vertex from the Slavnov-Taylor identities that it satisfies, by means of a nonperturbative implementation of the Ball-Chiu construction; the latter, in its original form, involves the inverse gluon propagator, the ghost dressing function, and certain form factors of the ghost-gluon kernel. The main conceptual subtlety that renders this endeavor nontrivial is the infrared finiteness of the gluon propagator, and the resulting need to separate the vertex into two pieces, one that is intimately connected with the emergence of a gluonic mass scale, and one that satisfies the original set of Slavnov-Taylor identities, but with the inverse gluon propagator replaced by its “kinetic” term. The longitudinal form factors obtained by this construction are presented for arbitrary Euclidean momenta, as well as special kinematic configurations, parametrized by a single momentum. A particularly preeminent feature of the components comprising the tree-level vertex is their considerable suppression for momenta below 1 GeV, and the appearance of the characteristic “zero-crossing” in the vicinity of 100-200 MeV. Special combinations of the form factors derived with this method are compared with the results of recent large-volume lattice simulations, and are found to capture faithfully the rather complicated curves formed by the data. A similar comparison with results obtained from Schwinger-Dyson equations reveals a fair overall agreement, but with appreciable differences at intermediate energies. A variety of issues related to the distribution of the pole terms responsible for the gluon mass generation are discussed in detail, and their impact on the structure of the transverse parts is elucidated. In addition, a brief account of several theoretical and phenomenological possibilities involving these newly acquired results is presented.  
  Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467734600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4010  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Gluon mass scale through nonlinearities and vertex interplay Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 9 Pages 094039 - 19pp  
  Keywords  
  Abstract We present a novel analysis of the gluon gap equation, where its full nonlinear structure is duly taken into account. In particular, while in previous treatments the linearization of this homogeneous integral equation introduced an indeterminacy in the scale of the corresponding mass, the current approach determines it uniquely, once the value of the gauge coupling at a given renormalization point is used as input. A crucial ingredient for this construction is the “kinetic term” of the gluon propagator, whose form is not obtained from the complicated equation governing its evolution, but is rather approximated by suitable initial Ansatze, which are subsequently improved by means of a systematic iterative procedure. The multiplicative renormalization of the central equation is carried out following an approximate method, which is extensively employed in the studies of the standard quark gap equation. This approach amounts to the effective substitution of the vertex renormalization constants by kinematically simplified form factors of the three- and four-gluon vertices. The resulting numerical interplay, exemplified by the infrared suppression of the three-gluon vertex and the mild enhancement of the four-gluon vertex, is instrumental for obtaining positive-definite and monotonically decreasing running gluon masses. The resulting gluon propagators, put together from the gluon masses and kinetic terms obtained with this method, match rather accurately the data obtained from large-volume lattice simulations.  
  Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000498877900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4208  
Permanent link to this record
 

 
Author (up) Aguilera-Verdugo, J.J.; Driencourt-Mangin, F.; Plenter, J.; Ramirez-Uribe, S.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tracz, S. url  doi
openurl 
  Title Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 163 - 12pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.  
  Address [Aguilera-Verdugo, J. Jesus; Driencourt-Mangin, Felix; Plenter, Judith; Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.; Tracz, Szymon] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513535500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4288  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva