toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Soderstrom, P.A. et al; Agramunt, J.; Egea, J.; Gadea, A.; Huyuk, T. doi  openurl
  Title Neutron detection and gamma-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537 Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 916 Issue Pages 238-245  
  Keywords BC-501A; BC-537; Digital pulse-shape discrimination; Fast-neutron detection; Liquid scintillator; Neural networks  
  Abstract In this work we present a comparison between the two liquid scintillators BC-501A and BC-537 in terms of their performance regarding the pulse-shape discrimination between neutrons and gamma rays. Special emphasis is put on the application of artificial neural networks. The results show a systematically higher gamma-ray rejection ratio for BC-501A compared to BC-537 applying the commonly used charge comparison method. Using the artificial neural network approach the discrimination quality was improved to more than 95% rejection efficiency of gamma rays over the energy range 150 to 1000 keV for both BC-501A and BC-537. However, due to the larger light output of BC-501A compared to BC-537, neutrons could be identified in BC-501A using artificial neural networks down to a recoil proton energy of 800 keV compared to a recoil deuteron energy of 1200 keV for BC-537. We conclude that using artificial neural networks it is possible to obtain the same gamma-ray rejection quality from both BC-501A and BC-537 for neutrons above a low-energy threshold. This threshold is, however, lower for BC-501A, which is important for nuclear structure spectroscopy experiments of rare reaction channels where low-energy interactions dominates.  
  Address [Soderstrom, P-A] ELI NP, Bucharest 077125, Romania, Email: par.anders@eli-np.ro  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455016800033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3869  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the Charm-Mixing Parameter y(CP) Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue 1 Pages 011802 - 10pp  
  Keywords  
  Abstract A measurement of the charm-mixing parameter Y-CP using D-0 -> K+K-, D-0 -> pi(+)pi(-), and D-0 -> K-pi(+)decays is reported. The D-0 mesons are required to originate from semimuonic decays of B- and (B) over bar (0)mesons. These decays are partially reconstructed in a data set of proton-proton collisions at center-of-mass energies of 7 and 8 TeV collected with the LHCb experiment and corresponding to an integrated luminosity of 3 fb(-1). The y c p parameter is measured to be (0.57 +/- 0.13(stat) +/- 0.09(syst))%, in agreement with, and as precise as, the current world-average value.  
  Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455164600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3870  
Permanent link to this record
 

 
Author Ilner, A.; Blair, J.; Cabrera, D.; Markert, C.; Bratkovskaya, E. url  doi
openurl 
  Title Probing hot and dense nuclear matter with K*, (K)over-bar* vector mesons Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 99 Issue 2 Pages 024914 - 22pp  
  Keywords  
  Abstract We investigate the possibility of probing the hot and dense nuclear matter-created in relativistic heavyion collisions (HICs)-with strange vector mesons (K*, (K) over bar*). Our analysis is based on the nonequilibrium parton-hadron-string dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees of freedom and describes the full dynamics of HIC on a microscopic level-starting from the primary nucleon-nucleon collisions to the formation of the strongly interacting quark gluon plasma (QGP), followed by dynamical hadronization of (anti)quarks as well as final hadronic elastic and inelastic interactions. This allows us to study the K* and (K) over bar* meson formation from the QGP as well as the in-medium effects related to the modification of their spectral properties during the propagation through the dense and hot hadronic environment in the expansion phase. We employ relativistic Breit-Wigner spectral functions for the K*, (K) over bar* mesons with self-energies obtained from a self-consistent coupled-channel G-matrix approach to study the role of in-medium effects on the K* and (K) over bar* meson dynamics in heavy-ion collisions from FAIR/NICA to LHC energies. According to our analysis most of the final K* /(K) over bar*'s, that can be observed experimentally by reconstruction of the invariant mass of pi + K((K) over bar) pairs, are produced during the late hadronic phase and originate dominantly from the K((K) over bar) + pi -> K*( (K) over bar*) formation channel. The amount of K*/ (K) over bar*'s, originating from the QGP channel is comparatively small even at LHC energies and those K* /(K) over bar*'s can hardly be reconstructed experimentally due to the rescattering of final pions and (anti)kaons. This mirrors the results from our previous study on the strange vector-meson production in heavy-ion collisions at RHIC energies. We demonstrate that K* /(K) over bar* in-medium effects should be visible at FAIR/NICA and BES RHIC energies, where the production of K* /(K) over bar*'s occurs at larger net-baryon densities. Finally, we present the experimental procedures to extract the information on the resonance masses and widths by fitting the final mass spectra at LHC energies.  
  Address [Ilner, Andrej; Bratkovskaya, Elena] Johann Wolfgang Goethe Univ Frankfurt Main, Inst Theoret Phys, D-60438 Frankfurt, Germany, Email: ilner@fias.uni-frankfurt.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459905400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3925  
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A. url  doi
openurl 
  Title Observation of the Decay D-0 -> K- pi(+) e(+) e(-) Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue 8 Pages 081802 - 8pp  
  Keywords  
  Abstract We report the observation of the rare charm decay D-0 -> K-pi(+)e(+)e(-), based on 468 fb(-1) of e(+)e(-) annihilation data collected at or close to the center-of-mass energy of the (sic)(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory. We find the branching fraction in the invariant mass range 0.675 < m(e(+)e(-)) < 0.875 GeV/c(2) of the electron-positron pair to be B(D-0 -> K-pi(+)e(+)e(-)) = (4.0 +/- 0.5 +/- 0.2 +/- 0.1) x 10(-6), where the first uncertainty is statistical, the second systematic, and the third due to the uncertainty in the branching fraction of the decay D-0 -> K-pi(+)pi(+)pi(-) used as a normalization mode. The significance of the observation corresponds to 9.7 standard deviations including systematic uncertainties. This result is consistent with the recently reported D-0 -> K-pi(+)mu(+)mu(-) branching fraction, measured in the same invariant mass range, and with the value expected in the standard model. In a set of regions of m(e(+)e(-)), where long-distance effects are potentially small, we determine a 90% confidence level upper limit on the branching fraction B(D-0 -> K-pi(+)e(+)e(-)) < 3.1 x 10(-6).  
  Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459920400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3926  
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo-Luque, C.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Electroluminescence TPCs at the thermal diffusion limit Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 027 - 23pp  
  Keywords Dark Matter and Double Beta Decay (experiments); Photon production; Particle correlations and fluctuations; Rare decay  
  Abstract The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the Xe-136 isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 for pure xenon down to 2.5 using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.  
  Address [Henriques, C. A. O.; Monteiro, C. M. B.; Freitas, E. D. C.; Mano, R. D. P.; Jorge, M. R.; Fernandes, A. F. M.; Fernandes, L. M. P.; dos Santos, J. M. F.] Univ Coimbra, Phys Dept, LIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: pancho@gian.fis.uc.pt  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455157300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3873  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva