toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vicente, A. url  doi
openurl 
  Title Anomalies in b -> s transitions and dark matter Type Journal Article
  Year 2018 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2018 Issue Pages (down) 3905848 - 11pp  
  Keywords  
  Abstract Since 2013, the LHCb collaboration has reported on the measurement of several observables associated with b -> s transitions, finding various deviations from their predicted values in the Standard Model. These include a set of deviations in branching ratios and angular observables, as well as in the observables R-k and R-k*, specially built to test the possible violation of Lepton Flavor Universality. Even though these tantalizing hints are not conclusive yet, the b -> s* anomalies have gained considerable attention in the flavor community. Here we review new physics models that address these anomalies and explore their possible connection to the dark matter of the Universe. After discussing some of the ideas introduced in these works and classifying the proposed models, two selected examples are presented in detail in order to illustrate the potential interplay between these two areas of current particle physics.  
  Address [Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Apdo 22085, E-46071 Valencia, Spain, Email: avelino.vicente@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000437956000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3652  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsun, S.S. url  doi
openurl 
  Title A closer study of the framed standard model yielding testable new physics plus a hidden sector with dark matter candidates Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 33 Pages (down) 1850195 - 75pp  
  Keywords Gauge field theories; beyond the standard model; composite models; mass and mixing of fermions; dark matter  
  Abstract This closer study of the FSM (1) retains the earlier results of Ref. 1 in offering explanation for the existence of three fermion generations, as well as the hierarchical mass and mixing patterns of leptons and quarks; (II) predicts a vector boson G with mass of order TeV which mixes gamma with and Z of the standard model. The subsequent deviations from the standard mixing scheme are calculable in terms of the G mass. While these deviations for (i) mz – mw, (ii) Gamma(Z -> l (+)l( -)), and (iii) F(Z -> hadrons) are all within present experimental errors so long as mG > 1 TeV, they should soon be detectable if the G mass is not too much bigger; (III) suggests that in parallel to the standard sector familiar to us, there is another where the roles of flavour and colour are interchanged. Though quite as copiously populated and as vibrant in self-interactions as our own, it communicates but little with the standard sector except via mixing through a couple of known portals, one of which is the gamma – Z – G complex noted in (II), and the other is a scalar complex which includes the standard model Higgs. As a result, the new sectors paper. appears hidden to us as we appear hidden to them, and so its lowest members with masses of order 10 MeV, being electrically neutral and seemingly stable, but abundant, may make eligible candidates as constituents of dark matter. A more detailed summary of these results together with some remarks on the model's special theoretical features can be found in the last section of this paper.  
  Address [Bordes, Jose] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453027500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3844  
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title The Z boson in the framed standard model Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 32 Pages (down) 1850190 - 19pp  
  Keywords Beyond the Standard Model; Z mixing; mass and decay of the electroweak gauge bosons; LHC phenomenology  
  Abstract The framed standard model (FSM), constructed initially for explaining the existence of three fermion generations and the hierarchical mass and mixing patterns of quarks and leptons,(1,2) suggests also a “hidden sector” of particles(3) including some dark matter candidates. It predicts in addition a new vector boson G, with mass of order TeV, which mixes with the gamma and Z of the standard model yielding deviations from the standard mixing scheme, all calculable in terms of a single unknown parameter mG. Given that standard mixing has been tested already to great accuracy by experiment, this could lead to contradictions, but it is shown here that for the three crucial and testable cases so far studied (i) m(Z) – m(W), (ii) Gamma(Z -> l(+)l(-)), (iii) Gamma(Z -> hadrons), the deviations are all within the present stringent experimental bounds provided m(G) > 1 TeV, but should soon be detectable if experimental accuracy improves. This comes about because of some subtle cancellations, which might have a deeper reason that is not yet understood. By virtue of mixing, G can be produced at the LHC and appear as a l(+)l(-) anomaly. If found, it will be of interest not only for its own sake but serve also as a window on to the “hidden sector” into which it will mostly decay, with dark matter candidates as most likely products.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451433900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3821  
Permanent link to this record
 

 
Author Ghosh, P.; Lara, I.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title Searching for left sneutrino LSP at the LHC Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 18-19 Pages (down) 1850110 - 62pp  
  Keywords Supersymmetry phenomenology; supersymmetric Standard Model  
  Abstract We analyze relevant signals expected at the LHC for a left sneutrino as the lightest supersymmetric particle (LSP). The discussion is carried out in the “mu from nu” supersymmetric standard model (mu nu SSM), where the presence of R-parity breaking couplings involving right-handed neutrinos solves the μproblem and reproduces neutrino data. The sneutrinos are pair produced via a virtual W, Z or gamma in the s channel. From the prompt decay of a pair of left sneutrinos LSPs of any family, a significant diphoton signal plus missing transverse energy (MET) from neutrinos can be present in the mass range 118-132 GeV, with 13 TeV center-of-mass energy and an integrated luminosity of 100 fb(-1). In addition, in the case of a pair of tau left sneutrinos LSPs, given the large value of the tau Yukawa coupling diphoton plus leptons and/or multileptons can appear. We find that the number of expected events for the multilepton signal, together with properly adopted search strategies, is sufficient to give a significant evidence for a sneutrino of mass in the range 130-310 GeV, even with the integrated luminosity of 20 fb(-1). In the case of the signal producing diphoton plus leptons, an integrated luminosity of 100 fb(-1) is needed to give a significant evidence in the mass range 95-145 GeV. Finally, we discuss briefly the presence of displaced vertices and the associated range of masses.  
  Address [Ghosh, Pradipta] Vidyasagar Coll, Dept Phys, 39 Sankar Ghose Lane, Kolkata 700006, India, Email: tphyspg@gmail.com;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000438183700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3654  
Permanent link to this record
 

 
Author Izadi, A.; Shacker, S.S.; Olmo, G.J.; Banerjee, R. url  doi
openurl 
  Title Observational effects of varying speed of light in quadratic gravity cosmological models Type Journal Article
  Year 2018 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 15 Issue 5 Pages (down) 1850084 - 16pp  
  Keywords Palatini formalism; modified gravity; causal structure constant; varying speed of light  
  Abstract We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (c(ST)) may become variable in that local frame. For theories of the form f(R, R-mu nu R-mu nu), this variation in c(ST) has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.  
  Address [Izadi, Azam] Khajeh Nasir Toosi Univ Technol, Dept Phys, Tehran, Iran, Email: aizadi@kntu.ac.ir;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429106400016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3553  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva