toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aguilar-Saavedra, J.A.; Boudreau, J.; Escobar, C.; Mueller, J. url  doi
openurl 
  Title The fully differential top decay distribution Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 3 Pages 200 - 8pp  
  Keywords  
  Abstract We write down the four-dimensional fully differential decay distribution for the top quark decay t -> Wb -> l nu b. We discuss how its eight physical parameters can be measured, either with a global fit or with the use of selected one-dimensional distributions and asymmetries. We give expressions for the top decay amplitudes for a general tbW interaction, and show how the untangled measurement of the two components of the fraction of longitudinal W bosons – those with b quark helicities of 1/2 and -1/2, respectively – could improve the precision of a global fit to the tbW vertex.  
  Address [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain, Email: jaas@ugr.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400019500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3075  
Permanent link to this record
 

 
Author (up) Agullo, I.; del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title Gravity and handedness of photons Type Journal Article
  Year 2017 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 26 Issue 12 Pages 1742001 - 5pp  
  Keywords Quantum fields in curved spacetime; symmetry and conservation laws; electromagnetic wave propagation; anomalies  
  Abstract Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.  
  Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414411900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3355  
Permanent link to this record
 

 
Author (up) Agullo, I.; del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title Electromagnetic Duality Anomaly in Curved Spacetimes Type Journal Article
  Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 118 Issue 11 Pages 111301 - 5pp  
  Keywords  
  Abstract The source-free Maxwell action is invariant under electric-magnetic duality rotations in arbitrary spacetimes. This leads to a conserved classical Noether charge. We show that this conservation law is broken at the quantum level in the presence of a background classical gravitational field with a nontrivial Chern-Pontryagin invariant, in parallel with the chiral anomaly for massless Dirac fermions. Among the physical consequences, the net polarization of the quantum electromagnetic field is not conserved.  
  Address [Agullo, Ivan; del Rio, Adrian] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000396267100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2964  
Permanent link to this record
 

 
Author (up) Aitken, K.; McKeen, D.; Neder, T.; Nelson, A.E. url  doi
openurl 
  Title Baryogenesis from oscillations of charmed or beautiful baryons Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 7 Pages 075009 - 15pp  
  Keywords  
  Abstract We propose a model for CP-violating oscillations of neutral, heavy-flavor baryons into antibaryons at rates which are within a few orders of magnitude of their lifetimes. The flavor structure of the baryon violation suppresses neutron oscillations and baryon-number-violating nuclear decays to experimentally allowed rates. We also propose a scenario for producing such baryons in the early Universe via the out-of-equilibrium decays of a neutral particle, after hadronization but before nucleosynthesis. We find parameters where CP-violating baryon oscillations at a temperature of a few MeV could result in the observed asymmetry between baryons and antibaryons. Furthermore, part of the relevant parameter space for baryogenesis is potentially testable at Belle II via decays of heavy-flavor baryons into an exotic neutral fermion. The model introduces four new particles: three light Majorana fermions and a colored scalar. The lightest of these fermions is typically long lived on collider time scales and may be produced in decays of bottom and possibly charmed hadrons.  
  Address [Aitken, Kyle; Nelson, Ann E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA, Email: kaitken17@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000412516100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3321  
Permanent link to this record
 

 
Author (up) Alarcon, J.M.; Hiller Blin, A.N.; Vicente Vacas, M.J.; Weiss, C. url  doi
openurl 
  Title Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis Type Journal Article
  Year 2017 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 964 Issue Pages 18-54  
  Keywords Electromagnetic form factors; Chiral lagrangians; Dispersion relations; Hyperons; Charge distribution  
  Abstract The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M-pi(-1)) using methods of relativistic chiral effective field theory (chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M-pi(2) are calculated using relativistic chi EFT including octet and decuplet baryons. The chi EFT calculations are extended into the rho meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.  
  Address [Alarcon, J. M.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: alarcon@jlab.org  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404199900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3188  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva