toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) AGATA Collaboration (Vogt, A. et al); Gadea, A. doi  openurl
  Title Isomers and high-spin structures in the N=81 isotones Xe-135 and Ba-137 Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 2 Pages 024316 - 17pp  
  Keywords  
  Abstract The high-spin structures and isomers of the N = 81 isotones Xe-135 and Ba-137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in Xe-136+ U-238 and (ii) Xe-136+ Pb-208 MNT reactions employing the high-resolution Advanced Gamma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (iii) in the Xe-136+ Pt-198 MNT reaction employing the gamma-ray array GAMMASPHERE in combination with the gas-detector array CHICO, and (iv) via a B-11+ Te-130 fusion-evaporation reaction with the HORUS gamma-ray array at the University of Cologne. The high-spin level schemes of Xe-135 and Ba-137 are considerably extended to higher energies. The 2058-keV (19/2(-)) state in Xe-135 is identified as an isomer, closing a gap in the systematics along the N = 81 isotones. Its half-life is measured to be 9.0(9) ns, corresponding to a reduced transition probability of B(E2,19/2(-) -> 15/2(-)) = 0.52(6) W.u. The experimentally deduced reduced transition probabilities of the isomeric states are compared to shell-model predictions. Latest shell-model calculations reproduce the experimental findings generally well and provide guidance to the interpretation of the new levels.  
  Address [Vogt, A.; Birkenbach, B.; Reiter, P.; Blazhev, A.; Arnswald, K.; Eberth, J.; Fu, B.; Geibel, K.; Hess, H.; Hirsch, R.; Jolie, J.; Kaya, L.; Lewandowski, L.; Liang, X.; Mueller-Gatermann, C.; Queiser, M.; Radeck, F.; Rosiak, D.; Saed-Samii, N.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Wiens, A.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: andreas.vogt@ikp.uni-koeln.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393944100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2967  
Permanent link to this record
 

 
Author (up) AGATA Collaboration (Vogt, A. et al); Gadea, A. doi  openurl
  Title High-spin structures in Xe-132 and Xe-133 and evidence for isomers along the N=79 isotones Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 96 Issue 2 Pages 024321 - 14pp  
  Keywords  
  Abstract The transitional nuclei Xe-132 and Xe-133 are investigated after multinucleon-transfer (MNT) and fusionevaporation reactions. Both nuclei are populated (i) in Xe-136 + 2(08P)b MNT reactions employing the highresolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the Xe-136 + Pt-198 MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a Te-130(alpha, xn) Xe134-xn fusion-evaporation reaction employing the HORUS gamma-ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J(pi) = (7(-)) and (10+) isomers in Xe-132 and above the 11/2(-) isomer in Xe-133. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T-1/2 >> μs) isomer in Xe-133 which closes a gap along the N = isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.  
  Address [Vogt, A.; Birkenbach, B.; Reiter, P.; Arnswald, K.; Blazhev, A.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Karayonchev, V.; Kaya, L.; Mueller-Gatermann, C.; Queiser, M.; Regis, J. -M.; Saed-Samii, N.; Seidlitz, M.; Siebeck, B.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: andreas.vogt@ikp.uni-koeln.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000408346100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3252  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Schwinger mechanism in linear covariant gauges Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 034017 - 16pp  
  Keywords  
  Abstract In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansatze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansatze are compatible with the existence of nontrivial solutions. When such Ansatze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic “zero crossing,” while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394092900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2987  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Cardona, J.C.; Ferreira, M.N.; Papavassiliou, J. url  doi
openurl 
  Title Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 1 Pages 014029 - 29pp  
  Keywords  
  Abstract We determine the non-Abelian version of the four nontransverse form factors of the quark-gluon vertex, using exact expressions derived from the Slavnov-Taylor identity that this vertex satisfies. In addition to the quark and ghost propagators, a key ingredient of the present approach is the quark-ghost scattering kernel, which is computed within the one-loop dressed approximation. The vertex form factors obtained from this procedure are evaluated for arbitrary Euclidean momenta, and display features not captured by the well-known Ball-Chiu vertex, deduced from the Abelian (ghost-free) Ward identity. Particularly interesting in this analysis is the so-called soft-gluon limit, which, unlike other kinematic configurations considered, is especially sensitive to the approximations employed for the vertex entering in the quark-ghost scattering kernel, and may even be affected by a subtle numerical instability. As an elementary application of the results obtained, we evaluate and compare certain renormalization-point-independent combinations, which contribute to the interaction kernels appearing in the standard quark gap and Bethe-Salpeter equations. In doing so, even though all form factors of the quark-gluon vertex, and in particular the transverse ones which are unconstrained by our procedure, enter nontrivially in the aforementioned kernels, only the contribution of a single form factor, corresponding to the classical (tree-level) tensor, will be considered.  
  Address [Aguilar, A. C.; Cardona, J. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406540300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3232  
Permanent link to this record
 

 
Author (up) Aguilar-Saavedra, J.A.; Bernabeu, J.; Mitsou, V.A.; Segarra, A. url  doi
openurl 
  Title The Z boson spin observables as messengers of new physics Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 4 Pages 234 - 6pp  
  Keywords  
  Abstract We demonstrate that the eight multipole parameters describing the spin state of the Z boson are able to disentangle known Z production mechanisms and signals from new physics at the LHC. They can be extracted from appropriate asymmetries in the angular distribution of lepton pairs from the Z boson decay. The power of this analysis is illustrated by (1) the production of Z boson plus jets; (2) Z boson plus missing transverse energy; (3) W and Z bosons originating from the two-body decay of a heavy resonance.  
  Address [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain, Email: jaas@ugr.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399448700004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3121  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva