toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aguilar-Saavedra, J.A.; Bernabeu, J. url  doi
openurl 
  Title Breaking down the entire W boson spin observables from its decay Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 011301 - 6pp  
  Keywords (up)  
  Abstract We discuss the eight independent spin observables for the W boson in terms of its vector and tensor polarizations and identify the angular distributions and asymmetries able to separate them in collider experiments. The results are applied to the study of polarized top quark decays and diboson resonances. These novel observables are of great value for disentangling new physics mechanisms in W boson production.  
  Address [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368324500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2538  
Permanent link to this record
 

 
Author Gonzalez, M.; Kovalenko, S.G.; Hirsch, M. url  doi
openurl 
  Title QCD running in neutrinoless double beta decay: Short-range mechanisms Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 013017 - 11pp  
  Keywords (up)  
  Abstract The decay rate of neutrinoless double beta (0 nu beta beta) decay contains terms from heavy particle exchange, which lead to dimension-9 (d = 9) six fermion operators at low energies. Limits on the coefficients of these operators have been derived previously neglecting the running of the operators between the high scale, where they are generated, and the energy scale of 0 nu beta beta decay, where they are measured. Here we calculate the leading-order QCD corrections to all possible d = 9 operators contributing to the 0 nu beta beta amplitude and use renormalization group running to calculate 1-loop improved limits. Numerically, QCD running dramatically changes some limits by factors of the order of or larger than typical uncertainties in nuclear matrix element calculations. For some specific cases, operator mixing in the running changes limits even by up to 3 orders of magnitude. Our results can be straightforwardly combined with new experimental limits or improved nuclear matrix element calculations to rederive updated limits on all short-range contributions to 0 nu beta beta decay.  
  Address [Gonzalez, M.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso 2390123, Chile, Email: marcela.gonzalezp@titulados.usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368516100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2539  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo Diaz-Aldagalan, D.; Hernandez-Rey, J.J.; Real, D.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The prototype detection unit of the KM3NeT detector Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 2 Pages 54 - 12pp  
  Keywords (up)  
  Abstract A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80 km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 h of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3 degrees.  
  Address [Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C. D.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gest Integrada Zonas Costeras, Gandia, Spain, Email: creusot@apc.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369007300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2540  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Mitsou, V.A.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Search for an additional, heavy Higgs boson in the H → ZZ decay channel at root s=8 TeV in pp collision data with the ATLAS detector Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 1 Pages 45 - 42pp  
  Keywords (up)  
  Abstract A search is presented for a high-mass Higgs boson in several decay modes using the ATLAS detector at the CERN Large Hadron Collider. The search uses proton-proton collision data at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb. The results of the search are interpreted in the scenario of a heavy Higgs boson with a width that is small compared with the experimental mass resolution. The Higgs boson mass range considered extends up to for all four decay modes and down to as low as 140 , depending on the decay mode. No significant excess of events over the Standard Model prediction is found. A simultaneous fit to the four decay modes yields upper limits on the production cross-section of a heavy Higgs boson times the branching ratio to boson pairs. 95 % confidence level upper limits range from 0.53 pb at GeV to 0.008 pb at GeV for the gluon-fusion production mode and from 0.31 pb at GeV to 0.009 pb at GeV for the vector-boson-fusion production mode. The results are also interpreted in the context of Type-I and Type-II two-Higgs-doublet models.  
  Address [Jackson, P.; Lee, C. A.; Petridis, A.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368711500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2541  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Izmaylov, A.; Sorel, M.; Stamoulis, P. url  doi
openurl 
  Title Upper bound on neutrino mass based on T2K neutrino timing measurements Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 012006 - 15pp  
  Keywords (up)  
  Abstract The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV/c(2) range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be m(v)(2) < 5.6 MeV2/c(4).  
  Address [Kitching, P.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB, Canada  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369325800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2544  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva