toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P. url  doi
openurl 
  Title Measurement of the branching fractions of the radiative leptonic tau decays tau -> e gamma v(v)over-bar and tau -> μgamma v(v)over-bar at BABAR Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 5 Pages 051103 - 8pp  
  Keywords  
  Abstract We perform a measurement of the tau -> l gamma v (v) over bar (l = e, mu) branching fractions for a minimum photon energy of 10 MeV in the tau rest frame, using 431 fb(-1) of e(+) e(-) collisions collected at the center-of-mass energy of the Upsilon(4S) resonance with the BABAR detector at the PEP-II storage rings. We find B(tau -> μgamma v (v) over bar = (3.69 +/- 0.03 +/- 0.10) x 10(-3) and B(tau -> e gamma v (v) over bar = (1.847 +/- 0.015 +/- 0.052) x 10(-2), where the first quoted error is statistical and the second is systematic. These results are substantially more precise than previous measurements.  
  Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000351876200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2177  
Permanent link to this record
 

 
Author Cauchi, M.; Assmann, R.W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N. doi  openurl
  Title Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators Type Journal Article
  Year 2015 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams  
  Volume 18 Issue 2 Pages 021001 - 14pp  
  Keywords  
  Abstract The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.  
  Address [Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.] CERN, Geneva, Switzerland, Email: marija.cauchi@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-4402 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352074600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2178  
Permanent link to this record
 

 
Author Bernabeu, J.; Martinez-Vidal, F. url  doi
openurl 
  Title Colloquium: Time-reversal violation with quantum-entangled B mesons Type Journal Article
  Year 2015 Publication Reviews of Modern Physics Abbreviated Journal Rev. Mod. Phys.  
  Volume 87 Issue 1 Pages 165-182  
  Keywords  
  Abstract Symmetry transformations have been proven a bedrock tool for understanding the nature of particle interactions, formulating, and testing fundamental theories. Based on the up to now unbroken CPT symmetry, the violation of the CP symmetry between matter and antimatter by weak interactions, discovered in the decay of kaons in 1964 and observed more recently in 2001 in B mesons, strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal T. However, until recent years there has not been a direct detection of the expected time-reversal violation in the time evolution of any system. This Colloquium examines the field of time-reversal symmetry breaking in the fundamental laws of physics. For transitions, its observation requires an asymmetry with exchange of initial and final states. A discussion is given of the conceptual basis for such an exchange with unstable particles, using the quantum properties of Einstein-Podolsky-Rosen entanglement available at B meson factories combined with the decay as a filtering measurement. The method allows a clear-cut separation of different transitions between flavor and CP eigenstates in the decay of neutral B mesons. These ideas have been implemented for the experiment by the BABAR Collaboration at SLAC's B factory. The results, presented in 2012, prove beyond any doubt the violation of time-reversal invariance in the time evolution between these two states of the neutral B meson.  
  Address [Bernabeu, J.; Martinez-Vidal, F.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6861 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352076500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2179  
Permanent link to this record
 

 
Author Cauchi, M.; Assmann, R.W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.; Mollicone, P.; Sammut, N. doi  openurl
  Title Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts Type Journal Article
  Year 2015 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams  
  Volume 18 Issue 4 Pages 041002 - 14pp  
  Keywords  
  Abstract The CERN Large Hadron Collider (LHC) is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs), made of the tungsten heavy alloy INERMET (R) 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM) approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.  
  Address [Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.] CERN, CH-1211 Geneva 23, Switzerland, Email: marija.cauchi@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-4402 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352473800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2180  
Permanent link to this record
 

 
Author Dias, J.M.; Aceti, F.; Oset, E. url  doi
openurl 
  Title Study of B<(B)over bar>* and B*<(B)over bar>* interactions in I=1 and relationship to the Z(b)(10610), Z(b)(10650) states Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 7 Pages 076001 - 14pp  
  Keywords  
  Abstract We use the local hidden gauge approach in order to study the B (B) over bar* and B*(B) over bar* interactions for isospin I = 1. We show that both interactions via one light meson exchange are not allowed by the Okubo-ZweigIizuka rule and, for that reason, we calculate the contributions due to the exchange of two pions, interacting and noninteracting among themselves, and also due to the heavy vector mesons. Then, to compare all these contributions, we use the potential related to the heavy vector exchange as an effective potential corrected by a factor which takes into account the contribution of the other light meson exchanges. In order to look for poles, this effective potential is used as the kernel of the Bethe-Salpeter equation. As a result, for the B (B) over bar* interaction we find a loosely bound state with mass in the range 10587-10601 MeV, very close to the experimental value of the Z(b)(10610) reported by the Belle Collaboration. For the B*(B) over bar* case, we find a cusp at 10650 MeV for all spin J = 0, 1, 2 cases.  
  Address [Dias, J. M.; Aceti, F.; Oset, E.] Univ Valencia, Dept Fis Teor, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352191000013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2181  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva