toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chachamis, G.; Deak, M.; Rodrigo, G. url  doi
openurl 
  Title Heavy quark impact factor in kT-factorization Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 066 - 16pp  
  Keywords  
  Abstract We present the calculation of the finite part of the heavy quark impact factor at next-to-leading logarithmic accuracy in a form suitable for phenomenological studies such as the calculation of the cross-section for single bottom quark production at the LHC within the kT-factorization scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial (down) 1766  
Permanent link to this record
 

 
Author Della Morte, M.; Hernandez, P. url  doi
openurl 
  Title A non-perturbative study of massive gauge theories Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 213 - 20pp  
  Keywords  
  Abstract We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 1765  
Permanent link to this record
 

 
Author Felipe, R.G.; Joaquim, F.R.; Serodio, H. url  doi
openurl 
  Title Flavored CP asymmetries for type II seesaw leptogenesis Type Journal Article
  Year 2013 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 28 Issue 31 Pages 1350165 - 13pp  
  Keywords Leptogenesis; neutrino physics; seesaw mechanism  
  Abstract A novel contribution to the leptonic CP asymmetries in type II seesaw leptogenesis scenarios is obtained for the cases in which flavor effects are relevant for the dynamics of leptogenesis. In the so-called flavored leptogenesis regime, the interference between the tree-level amplitude of the scalar triplet decaying into two leptons and the one-loop wave function correction with leptons in the loop, leads to a new nonvanishing CP asymmetry contribution. The latter conserves total lepton number but violates lepton flavor. Cases in which this novel contribution may be dominant in the generation of the baryon asymmetry are briefly discussed.  
  Address [Gonzalez Felipe, R.; Joaquim, F. R.] Univ Tecn Lisboa, Dept Fis, P-1049001 Lisbon, Portugal, Email: ricardo.felipe@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329057000009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 1764  
Permanent link to this record
 

 
Author Resta-Lopez, J. doi  openurl
  Title Nonlinear protection of beam delivery systems for multi-TeV linear colliders Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages P11010 - 19pp  
  Keywords Beam Optics; Beam dynamics; Accelerator Subsystems and Technologies; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)  
  Abstract The post-linac energy collimation system of future e(+)e(-) multi-TeV linear colliders is designed to fulfil an essential function of protection of the Beam Delivery System (BDS) against miss-steered or errant beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This condition makes the design of the energy collimation system especially challenging, if we take into account the need to dispose of an unprecedented transverse beam energy density per beam of the order of GJ/mm(2), when assuming the nominal CLIC beam parameters at 3 TeV centre-of-mass energy, which translates into an extremely high damage potential of uncontrolled beams. This leads to research activities involving new collimator materials and novel collimation techniques. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a multipole magnet pair for energy collimation. In order to preserve an acceptable luminosity performance, we carefully study the general conditions for self-cancellation of optical aberrations between two multipoles. This nonlinear optics scheme is adapted to the requirements of the post-linac energy collimation system for the CLIC BDS, and its performance is investigated by means of beam tracking simulations. Although applied to the CLIC case, this nonlinear protection system could be adapted to other future colliders.  
  Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Valencia 46071, Spain, Email: resta@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329193500035 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial (down) 1697  
Permanent link to this record
 

 
Author ATLAS Tile Calorimeter Community (Abdallah, J. et al); Calderon, D.; Castillo Gimenez, V.; Costelo, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Mechanical construction and installation of the ATLAS tile calorimeter Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages T11001 - 26pp  
  Keywords Detector design and construction technologies and materials; Calorimeters  
  Abstract This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.  
  Address [Abdallah, J.; Calderon, D.; Castillo, M. V.; Costello, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls, J. A.] Univ Valencia, CSIC, Ctr Mixto, IFIC, E-46100 Valencia, Spain, Email: Proudfoot@anl.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329193500038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 1696  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva