toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P. url  doi
openurl 
  Title Search for di-muon decays of a low-mass Higgs boson in radiative decays of the Gamma(1S) Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 3 Pages 031102 - 8pp  
  Keywords  
  Abstract We search for di-muon decays of a low-mass Higgs boson (A(0)) produced in radiative Gamma(1S) decays. The Gamma(1S) sample is selected by tagging the pion pair in the Gamma(2S, 3S) -> pi(+)pi(-) Gamma(1S) transitions, using a data sample of 92.8 x 10(6) Gamma(2S) and 116.8 x 10(6) Gamma(3S) events collected by the BABAR detector. We find no evidence for A(0) production and set 90% confidence level upper limits on the product branching fraction B(Gamma(1S) -> gamma Lambda(0)) x B(Lambda(0)->mu(+)mu(-)) in the range of (0.28 – 9.7) x 10(-6) for 0.212 <= m(A0) <= 9.20 GeV/c(2). The results are combined with our previous measurements of Gamma(2S,3S) -> gamma Lambda(0), Lambda(0) -> mu(+)mu(-) to set limits on the effective coupling of the b quark to the Lambda(0).  
  Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000314994300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1334  
Permanent link to this record
 

 
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Measurement of the neutron-induced fission cross-section of Am-241 at the time-of-flight facility n_TOF Type Journal Article
  Year 2013 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 49 Issue 1 Pages 2 - 6pp  
  Keywords  
  Abstract The neutron-induced fission cross-section of Am-241 has been measured relative to the standard fission cross-section of U-235 between 0.5 and 20 MeV. The experiment was performed at the CERN nTOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the alpha-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the nTOF facility enabled us to obtain uncertainties of approximate to 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000315048100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1399  
Permanent link to this record
 

 
Author Basso, L.; Belyaev, A.; Chowdhury, D.; Hirsch, M.; Khalil, S.; Moretti, S.; O'Leary, B.; Porod, W.; Staub, F. url  doi
openurl 
  Title Proposal for generalised supersymmetry Les Houches Accord for see-saw models and PDG numbering scheme Type Journal Article
  Year 2013 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 184 Issue 3 Pages 698-719  
  Keywords SLHA; See-saw; PDG scheme  
  Abstract The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. In addition, we generalise the PDG numbering scheme to reflect the properties of the particles. (c) 2012 Elsevier B.V. All rights reserved.  
  Address [Basso, L.; Belyaev, A.; Khalil, S.; Moretti, S.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: lorenzo.basso@physik.uni-freiburg.de;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000315125500027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1341  
Permanent link to this record
 

 
Author Garcia-Recio, C.; Nieves, J.; Romanets, O.; Salcedo, L.L.; Tolos, L. url  doi
openurl 
  Title Odd parity bottom-flavored baryon resonances Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 3 Pages 034032 - 9pp  
  Keywords  
  Abstract The LHCb Collaboration has recently observed two narrow baryon resonances with beauty. Their masses and decay modes look consistent with the quark model orbitally excited states Lambda(b)(5912) and Lambda(b)*(5920), with quantum numbers J(P) = 1/2(-) and 3/2(-), respectively. We predict the existence of these states within a unitarized meson-baryon coupled-channel dynamical model, which implements heavy-quark spin symmetry. Masses, quantum numbers and couplings of these resonances to the different meson-baryon channels are obtained. We find that the resonances Lambda(0)(b)(5912) and Lambda(0)(b)(5920) are heavy-quark spin symmetry partners, which naturally explains their approximate mass degeneracy. Corresponding bottom-strange baryon resonances are predicted at Xi(b)(6035.4) (J(P) = 1/2(-)) and Xi(b)(6043.3) (J(P) = 3/2(-)). The two Lambda(b) and two Xi(b) resonances complete a multiplet of the combined symmetry SU(3)-flavor times heavy-quark spin.  
  Address [Garcia-Recio, C.; Salcedo, L. L.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000315149000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1332  
Permanent link to this record
 

 
Author Edgecock, T.R. et al; Agarwalla, S.K.; Cervera-Villanueva, A.; Donini, A.; Ghosh, T.; Gomez-Cadenas, J.J.; Hernandez, P.; Martin-Albo, J.; Mena, O. url  doi
openurl 
  Title High intensity neutrino oscillation facilities in Europe Type Journal Article
  Year 2013 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams  
  Volume 16 Issue 2 Pages 021002 - 18pp  
  Keywords  
  Abstract The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.  
  Address [Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-4402 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000315152000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1333  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva