toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Garcia-Recio, C.; Geng, L.S.; Nieves, J.; Salcedo, L.L. url  doi
openurl 
  Title Low-lying even-parity meson resonances and spin-flavor symmetry Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 1 Pages 016007 - 30pp  
  Keywords  
  Abstract (up) Based on a spin-flavor extension of chiral symmetry, a novel s-wave meson-meson interaction involving members of the rho nonet and of the pi octet is introduced, and its predictions are analyzed. The starting point is the SU(6) version of the SU(3)-flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry-breaking terms are then included to account for the physical meson masses and decay constants in a way that preserves (broken) chiral symmetry. Next, the T-matrix amplitudes are obtained by solving the Bethe-Salpeter equation in a coupled-channel scheme, and the poles are identified with their possible Particle Data Group counterparts. It is shown that most of the low-lying even-parity Particle Data Group meson resonances, especially in the J(P) = 0(+) and 1(+) sectors, can be classified according to multiplets of SU(6). The f(0)(1500), f(1)(1420), and some 0(+)(2(++)) resonances cannot be accommodated within this scheme, and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I >= 3/2 and/or vertical bar Y vertical bar = 2) with masses in the range of 1.4-1.6 GeV, which would complete the 27(1), 10(3), and 10(3)* multiplets of SU(3) circle times SU(2).  
  Address [Garcia-Recio, C.; Salcedo, L. L.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286765100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 585  
Permanent link to this record
 

 
Author Eisenstein, D.J. et al; Mena, O. url  doi
openurl 
  Title SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems Type Journal Article
  Year 2011 Publication Astronomical Journal Abbreviated Journal Astron. J.  
  Volume 142 Issue 3 Pages 72 - 24pp  
  Keywords cosmology: observations; Galaxy: evolution; planets and satellites: detection; surveys  
  Abstract (up) Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Ly alpha forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z approximate to 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = lambda/lambda Delta approximate to 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R approximate to 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 μm < lambda < 1.70 μm) spectra of 105 evolved, late-type stars, measuring separate abundances for similar to 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 ms(-1), similar to 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.  
  Address [Eisenstein, DJ; Fan, XH; Jiang, LH; Maseman, P; McGreer, ID; Rieke, GH; Rieke, MJ; Young, E] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6256 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294669700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 754  
Permanent link to this record
 

 
Author de Azcarraga, J.A.; Kamimura, K.; Lukierski, J. url  doi
openurl 
  Title Generalized cosmological term from Maxwell symmetries Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 12 Pages 124036 - 8pp  
  Keywords  
  Abstract (up) By gauging the Maxwell spacetime algebra, the standard geometric framework of Einstein gravity with cosmological constant term is extended by adding six four-vector fields A(mu)(ab)(x) associated with the six Abelian tensorial charges in the Maxwell algebra. In the simplest Maxwell extension of Einstein gravity this leads to a generalized cosmological term that includes a contribution from these vector fields. We also consider going beyond the basic gravitational model by means of bilinear actions for the new Abelian gauge fields. Finally, an analogy with the supersymmetric generalization of gravity is indicated. In an appendix, we propose an equivalent description of the model in terms of a shift of the standard spin connection by the A(mu)(ab)(x) fields.  
  Address [de Azcarrraga, Jose A.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291936200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 662  
Permanent link to this record
 

 
Author Mondragon, A.; Mondragon, M.; Peinado, E. doi  openurl
  Title Neutrino Masses, Mixings, and FCNC's in an S(3) Flavor Symmetric Extension of the Standard Model Type Journal Article
  Year 2011 Publication Physics of Atomic Nuclei Abbreviated Journal Phys. Atom. Nuclei  
  Volume 74 Issue 7 Pages 1046-1054  
  Keywords  
  Abstract (up) By introducing three Higgs fields that are SU(2) doublets and a flavor permutational symmetry, S(3), in the theory, we extend the concepts of flavor and generations to the Higgs sector and formulate a Minimal S(3)-Invariant Extension of the Standard Model. The mass matrices of the neutrinos and charged leptons are re-parameterized in terms of their eigenvalues, then the neutrino mixing matrix, V(PMNS), is computed and exact, explicit analytical expressions for the neutrino mixing angles as functions of the masses of neutrinos and charged leptons are obtained in excellent agreement with the latest experimental data. We also compute the branching ratios of some selected flavor-changing neutral current (FCNC) processes, as well as the contribution of the exchange of neutral flavor-changing scalars to the anomaly of the magnetic moment of the muon, as functions of the masses of charged leptons and the neutral Higgs bosons. We find that the S(3) x Z(2) flavor symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector, well below the present experimental bounds by many orders of magnitude. The contribution of FCNC's to the anomaly of the muon's magnetic moment is small, but not negligible.  
  Address [Mondragon, A; Mondragon, M] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico, Email: mondra@fisica.unam.mx  
  Corporate Author Thesis  
  Publisher Maik Nauka/Interperiodica/Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7788 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294027000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 723  
Permanent link to this record
 

 
Author Agarwalla, S.K.; Blennow, M.; Fernandez-Martinez, E.; Mena, O. url  doi
openurl 
  Title Neutrino probes of the nature of light dark matter Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 004 - 19pp  
  Keywords dark matter experiments; neutrino detectors  
  Abstract (up) Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.  
  Address [Agarwalla, Sanjib Kumar; Mena, Olga] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296767000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva