toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nguyen, C.V.; Gillam, J.E.; Brown, J.M.C.; Martin, D.V.; Nikulin, D.A.; Dimmock, M.R. doi  openurl
  Title Towards Optimal Collimator Design for the PEDRO Hybrid Imaging System Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal (up) IEEE Trans. Nucl. Sci.  
  Volume 58 Issue 3 Pages 639-650  
  Keywords Compton scattering enhancement; multiple pinhole; PEDRO  
  Abstract The Pixelated Emission Detector for RadiOisotopes (PEDRO) is a hybrid imaging system designed for the measurement of single photon emission from small animal models. The proof-of-principle device consists of a Compton-camera situated behind a mechanical collimator and is intended to provide optimal detection characteristics over a broad spectral range, from 30 to 511 keV. An automated routine has been developed for the optimization of large-area slits in the outer regions of a collimator which has a central region allocated for pinholes. The optimization was tested with a GEANT4 model of the experimental prototype. The data were blurred with the expected position and energy resolution parameters and a Bayesian interaction ordering algorithm was applied. Images were reconstructed using cone back-projection. The results show that the optimization technique allows the large-area slits to both sample fully and extend the primary field of view (FoV) determined by the pinholes. The slits were found to provide truncation of the back-projected cones of response and also an increase in the success rate of the interaction ordering algorithm. These factors resulted in an increase in the contrast and signal-to-noise ratio of the reconstructed image estimates. Of the two configurations tested, the cylindrical geometry outperformed the square geometry, primarily because of a decrease in artifacts. This was due to isotropic modulation of the cone surfaces, that can be achieved with a circular shape. Also, the cylindrical geometry provided increased sampling of the FoV due to more optimal positioning of the slits. The use of the cylindrical collimator and application of the transmission function in the reconstruction was found to improve the resolution of the system by a factor of 20, as compared to the uncollimated Compton camera. Although this system is designed for small animal imaging, the technique can be applied to any application of single photon imaging.  
  Address [Nguyen, Chuong V.; Dimmock, Matthew R.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia, Email: chuong.nguyen@monash.edu  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291655900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 650  
Permanent link to this record
 

 
Author Miñano, M. doi  openurl
  Title Radiation Hard Silicon Strips Detectors for the SLHC Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal (up) IEEE Trans. Nucl. Sci.  
  Volume 58 Issue 3 Pages 1135-1140  
  Keywords High energy physics; microstrip; radiation detectors; silicon; SLHC  
  Abstract While the Large Hadron Collider (LHC) began taking data in 2009, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2018. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrade, super-LHC (sLHC) of the ATLAS microstrip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and the detectors under study. This involves designing silicon detectors, irradiating them to the sLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS microstrip detector will be presented. Important challenges related to engineering layout, powering, cooling and reading out a very large strip detector are presented. Ideas on possible schemes for the layout and support mechanics will be shown.  
  Address IFIC UV CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mercedes.minano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291659300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 651  
Permanent link to this record
 

 
Author Carrio, F.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Marin, C.; Moreno, P.; Sanchis, E.; Solans, C.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Optical Link Card Design for the Phase II Upgrade of TileCal Experiment Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal (up) IEEE Trans. Nucl. Sci.  
  Volume 58 Issue 4 Pages 1657-1663  
  Keywords High energy physics instrumentation computing; optical-fiber communication high-speed electronics; programmable logic devices  
  Abstract This paper presents the design of an optical link card developed in the frame of the R&D activities for the phase 2 upgrade of the TileCal experiment. This board, that is part of the evaluation of different technologies for the final choice in the next years, is designed as a mezzanine that can work independently or be plugged in the optical multiplexer board of the TileCal backend electronics. It includes two SNAP 12 optical connectors able to transmit and receive up to 75 Gb/s and one SFP optical connector for lower speeds and compatibility with existing hardware as the read out driver. All processing is done in a Stratix II GX field-programmable gate array (FPGA). Details are given on the hardware design, including signal and power integrity analysis, needed when working with these high data rates and on firmware development to obtain the best performance of the FPGA signal transceivers and for the use of the GBT protocol.  
  Address [Carrio, F; Gonzalez, V; Marin, C; Sanchis, E] Univ Valencia, Dept Elect Engn, E-46100 Valencia, Spain, Email: vicente.gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293975700037 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 722  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Mass Hierarchy, Mixing, CP-Violation And Higgs Decay – Or Why Rotation Is Good For Us Type Journal Article
  Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal (up) Int. J. Mod. Phys. A  
  Volume 26 Issue 13 Pages 2087-2124  
  Keywords Quark and lepton mixing; mass hierarchy; CP violation; rotation  
  Abstract The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how it leads to ready explanations both for the fermion mass hierarchy and for the distinctive mixing patterns between up and down fermion states, which can be and have been tested against experiment and shown to be fully consistent with existing data. Further, R2M2 is seen to offer, as by-products: (i) a new solution to the strong CP problem in QCD by linking the theta-angle there to the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel predictions of possible anomalies in Higgs decay observable in principle at the LHC. A special effort is made to answer some questions raised.  
  Address [Baker, Michael J.; Tsun, Tsou Sheung] Univ Oxford, Inst Math, Oxford OX1 3LB, England, Email: bakerm@maths.ox.ac.uk  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291219600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 643  
Permanent link to this record
 

 
Author Chang, Q.; Li, X.Q.; Yang, Y.D. url  doi
openurl 
  Title The effects of a family nonuniversal Z ' boson on B -> pi pi decays Type Journal Article
  Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal (up) Int. J. Mod. Phys. A  
  Volume 26 Issue 7-8 Pages 1273-1294  
  Keywords B-physics; rare decays; beyond Standard Model  
  Abstract Motivated by the measured large branching ratio of (B) over bar (0) --> pi(0)pi(0) (the so-called pi pi puzzle), we investigate the effects of a family nonuniversal Z' model on the tree-dominated B --> pi pi decays. We find that the Z' coupling parameter zeta(LR)(d) similar to 0.05 with a nontrivial new weak phase phi(L)(d) similar to -50 degrees, which is relevant to the Z' contributions to the QCD penguin sector Delta C-5, is needed to reconcile the observed discrepancy. Combined with the recent fitting results from B --> pi K, pi K* and rho K decays, the Z' parameter spaces are severely reduced but still not excluded entirely, implying that both the “pi pi” and “pi K” puzzles could be accommodated simultaneously within such a family nonuniversal Z' model.  
  Address [Chang, Qin; Li, Xin-Qiang] Henan Normal Univ, Dept Phys, Xinxiang 453007, Henan, Peoples R China, Email: changqin@htu.cn  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289175800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 595  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva