toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Verdu-Andres, S. url  doi
openurl 
  Title Cyclinac medical accelerators using pulsed C6+/H-2(+) ion sources Type Journal Article
  Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 5 Issue (up) Pages C09004 - 19pp  
  Keywords Instrumentation for particle-beam therapy; Instrumentation for hadron therapy; Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)  
  Abstract Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed 'cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H-2(+) ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 10(8) fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.  
  Address [Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Andres, S. Verdu] TERA Fdn, I-28100 Novara, Italy, Email: Adriano.Garonna@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283796100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 327  
Permanent link to this record
 

 
Author Rodriguez, D. et al; Algora, A.; Rubio, B.; Tain, J.L. doi  openurl
  Title MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR Type Journal Article
  Year 2010 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 183 Issue (up) Pages 1-123  
  Keywords  
  Abstract Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.  
  Address [Rodriguez, D.; Lallena, A. M.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain, Email: danielrodriguez@ugr.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280061400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 412  
Permanent link to this record
 

 
Author Batist, L.; Gorska, M.; Grawe, H.; Janas, Z.; Kavatsyuk, M.; Karny, M.; Kirchner, R.; La Commara, M.; Mukha, I.; Plochocki, A.; Roeckl, E. doi  openurl
  Title Systematics of Gamow-Teller beta decay “Southeast” of Sn-100 Type Journal Article
  Year 2010 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 46 Issue (up) 1 Pages 45-53  
  Keywords  
  Abstract The energy centroids and integrated strengths of Gamow-Teller transitions in the beta(+) and electron-capture decay are analyzed for nuclei whose proton number Z and neutron number N are restricted to 44 <= Z <= 50 and 50 <= N <= 58. The analysis is based on data measured both with high-resolution gamma-ray spectrometry and total gamma-ray absorption techniques. The dependence of the considered quantities on the relative neutron excess are established after taking into account the effects due to the Coulomb interaction and mean-field level occupancies. An extrapolation of this dependence to the lightest known tin isotopes is used to estimate the decay characteristics of Sn-100 and Sn-101. The values extrapolated for the half-lives of Sn-100 and Sn-101 agree with experimental data. Using the extrapolated values together with shell model predictions, the Q values for the electron-capture decay of Sn-100 is evaluated. The quenching factor for beta(+) and the electron-capture decay of the nuclei under consideration here is established to be 0.56(2) with a possible weak dependence on N – Z.  
  Address [Batist, L.] St Petersburg Nucl Phys Inst, RU-188350 Gatchina, Russia, Email: batist@pnpi.spb.ru  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282433500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 258  
Permanent link to this record
 

 
Author Yamagata-Sekihara, J.; Cabrera, D.; Vicente Vacas, M.J.; Hirenzaki, S. url  doi
openurl 
  Title Formation of phi Mesic Nuclei Type Journal Article
  Year 2010 Publication Progress of Theoretical Physics Abbreviated Journal Prog. Theor. Phys.  
  Volume 124 Issue (up) 1 Pages 147-162  
  Keywords  
  Abstract We consider the structure and formation of the phi mesic nuclei to investigate the experimental feasibility of the observation of signals of the phi mesic nucleus formation. phi mesic nuclei are considered to be very important objects to study the in-medium modification of the phi-meson spectral function at finite density. We consider ((p) over bar, phi), (gamma, p) and (pi(-), n) reactions to produce a phi-meson inside the nucleus and evaluate the effects of its medium modifications to the reaction cross sections. We also estimate the consequences of the uncertainties of the in-medium (K) over bar self-energy to the phi-nucleus interaction. We find that it may be possible to see peak structures in the reaction spectra for the strong attractive potential cases. On the other hand, for strong absorptive interaction cases with relatively weak attraction, it is very difficult to observe clear peaks and we may need to know the spectrum shape in a wide energy region to deduce the properties of phi.  
  Address [Yamagata-Sekihara, Junko; Vacas, Manuel J. Vicente] Univ Valencia, CSIC, Dept Fis Teor, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Progress Theoretical Physics Publication Office Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-068x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280654900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 396  
Permanent link to this record
 

 
Author MiniBooNE Collaboration (Aguilar-Arevalo, A.A. et al); Sorel, M. url  doi
openurl 
  Title Measurement of v(mu) and (v)over-bar(mu) induced neutral current single pi(0) production cross sections on mineral oil at E-v similar to O (1 GeV) Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue (up) 1 Pages 013005 - 14pp  
  Keywords  
  Abstract MiniBooNE reports the first absolute cross sections for neutral current single pi(0) production on CH2 induced by neutrino and antineutrino interactions measured from the largest sets of NC pi(0) events collected to date. The principal result consists of differential cross sections measured as functions of pi(0) momentum and pi(0) angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 +/- 0.05(stat) +/- 0.76(sys)) X 10(-40) cm(2)/nucleon at a mean energy of < E-v > = 808 MeV and (1.48 +/- 0.05(stat) +/- 0.23(sys)) X 10(-40) cm(2)/nucleon at a mean energy of < E-v > = 664 MeV for v(mu) and (v) over bar (mu) induced production, respectively. In addition, we have included measurements of the neutrino and antineutrino total cross sections for incoherent exclusive NC 1 pi(0) production corrected for the effects of final state interactions to compare to prior results.  
  Address [Aguilar-Arevalo, A. A.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language Rumanian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274002800011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 266  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva