toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title A method for detection of muon induced electromagnetic showers with the ANTARES detector Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 675 Issue (up) Pages 56-62  
  Keywords Neutrino telescope; Electromagnetic shower identification; High energy muons; Energy reconstruction  
  Abstract The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.  
  Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Rostovtsev, A.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: manganos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302973600011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 988  
Permanent link to this record
 

 
Author Domingo-Pardo, C. doi  openurl
  Title A new technique for 3D gamma-ray imaging: Conceptual study of a 3D camera Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 675 Issue (up) Pages 123-132  
  Keywords Gamma-ray detector; Three dimensional gamma-ray imaging; Compton camera; Gamma camera  
  Abstract A novel technique for 3D gamma-ray imaging is presented. This method combines the positron annihilation Compton scattering imaging technique with a supplementary position sensitive detector, which registers gamma-rays scattered in the object at angles of about 90 degrees. The 3D coordinates of the scattering location can be determined rather accurately by applying the Compton principle. This method requires access to the object from two orthogonal sides and allows one to achieve a position resolution of few mm in all three space coordinates. A feasibility study for a 3D camera is presented based on Monte Carlo calculations.  
  Address Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302973600019 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 989  
Permanent link to this record
 

 
Author Borja, E.F.; Garay, I.; Vidotto, F. url  doi
openurl 
  Title Learning about Quantum Gravity with a Couple of Nodes Type Journal Article
  Year 2012 Publication Symmetry Integrability and Geometry-Methods and Applications Abbreviated Journal Symmetry Integr. Geom.  
  Volume 8 Issue (up) Pages 015 - 44pp  
  Keywords discrete gravity; canonical quantization; spinors; spinfoam; quantum cosmology  
  Abstract Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory.  
  Address [Borja, Enrique F.; Garay, Inaki] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany, Email: efborja@theorie3.physik.uni-erlangen.de;  
  Corporate Author Thesis  
  Publisher Natl Acad Sci Ukraine, Inst Math Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1815-0659 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303831400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1018  
Permanent link to this record
 

 
Author Bates, R.L. et al; Bernabeu Verdú, J.; Civera, J.V.; Gonzalez, F.; Lacasta, C.; Sanchez, J. doi  openurl
  Title The ATLAS SCT grounding and shielding concept and implementation Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue (up) Pages P03005  
  Keywords  
  Abstract This paper describes the design and implementation of the grounding and shielding system for the ATLAS SemiConductor Tracker (SCT). The mitigation of electromagnetic interference and noise pickup through power lines is the critical design goal as they have the potential to jeopardize the electrical performance. We accomplish this by adhering to the ATLAS grounding rules, by avoiding ground loops and isolating the different subdetectors. Noise sources are identified and design rules to protect the SCT against them are described. A rigorous implementation of the design was crucial to achieve the required performance. This paper highlights the location, connection and assembly of the different components that affect the grounding and shielding system: cables, filters, cooling pipes, shielding enclosure, power supplies and others. Special care is taken with the electrical properties of materials and joints. The monitoring of the grounding system during the installation period is also discussed. Finally, after connecting more than four thousand SCT modules to all of their services, electrical, mechanical and thermal within the wider ATLAS experimental environment, dedicated tests show that noise pickup is minimised.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000304015300053 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1025  
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Agramunt, J.; Ball, M.; Bayarri, J.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Perez, J.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title SiPMs coated with TPB: coating protocol and characterization for NEXT Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue (up) Pages P02010  
  Keywords  
  Abstract Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking read-out in NEXT, a neutrinoless beta beta decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifter tetraphenyl butadiene (TPB). In this paper we describe the protocol developed for coating the SiPMs with TPB and the measurements performed for characterizing the coatings as well as the performance of the coated sensors in the UV-VUV range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303940900076 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1028  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva